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We have previously modified the conventional Self-Organizing Map (SOM), on the basis of batch-learning SOM, for
genome and protein informatics, which makes the learning process and resulting map independent of the order of data input.
BLSOM thus developed became suitable for actualizing high-performance parallel-computing and revealed species-specific
characteristics of oligonucleotides (e.g., tetranucleotides) frequencies in individual genomes, permitting clustering
(self-organization) of genomic fragments (e.g., 5 kb or less) according to species without species information during the
calculation. Using ES, we established the alignment-free clustering method BLSOM that could analyze far more than
100,000,000 sequences simultaneously; sequence fragments from almost all prokaryotic, eukaryotic, and viral genomes
currently available could be classified (self-organized) according to phylotypes on a single two-dimensional map. In this
report, we here apply this large-scale BLSOM to identifying virus genome sequences in metagenomes derived from Ticks.

Keywords : Batch-Learning Self-Organizing Map, Oligonucleotide, Metagenome, Virus, Al

1. Introduction

One of the most important current task of life science is to
unveil unknown basic knowledge from big data of genomic
sequences accumulated in the International DNA Databanks.
An unsupervised neural network algorithm, self-organizing
map (SOM), is an effective tool for clustering and visualizing
high-dimensional complex data on a single map, and we have
modified the SOM for the genome analyses by developing a
Batch-Learning SOM (BLSOM) [1,2]. We have used the
BLSOM to analyze short oligonucleotide frequencies (di- to
pentanucleotide frequency) in a wide range of prokaryotic and
eukaryotic genomes [1-4].

When only fragmental sequences (e.g., 10 kb sequences)
from mixed genomes derived from multiple organisms are
given, it appears impossible to identify how many and what
types of genomes are present in the collected sequences.
However, we found that BLSOM could classify the sequence
fragments according to phylotype without any information
other than oligonucleotide frequencies. BLSOM recognized,
in most sequence  fragments,  phylotype-specific
characteristics of oligonucleotide frequencies, permitting
phylotype-specific clustering (self-organization) of sequences

and unveiling diagnostic oligonucleotides responsible for the

phylotype-specific clustering [3,4]. In previous studies, we
optimized the BLSOM method for phylogenetic classification
of genomic sequences obtained from mixed genomes [5-7].

In this report, we applied the large-scale BLSOM to
searching virus genomes in metagenomic sequences derived

from Ticks and predicting their phylogenetic origin.

2. Method

BLSOM for oligonucleotide compositions and that for
peptide composition were conducted as described previously
(Abe et al., 2003) [2] and (Abe et al., 2009) [8].

3. Results & Discussion
3.1 Workflow for detecting virus genome in metagenomic

sequences and predicting their origin by using BLSOM

In this workflow, two types of large-scale BLSOMs,
namely Kingdom- and Virus group-BLSOM, were
constructed to identify viruses from metagenomic sequences
using sequences deposited in DDBJEMBL/GenBank as
previously described [2]. Kingdom-BLSOM was constructed
with tetranucleotide frequencies in all 5-kb sequences derived

from the whole-genome sequences of 111 eukaryotes, 2,813
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prokaryotes, 1,728 mitochondria, 110 chloroplasts, and total of 602,951 1-kb sequences from 97 families.

31,486 viruses. Virus group-BLSOM was constructed with a

Table 1. Estimation ratio of BLSOM-based classification using deposited viral sequence data.

Range of sequence Virus detection ratio (%) at Coincidence ratio (%) of

Dataset lengths (bp) Kingdom level viral families
A 300—1,000 66.4 79.9
B 500—1,000 93.3 79.9
C 750—1,000 95.9 81.8

Estimation ratios of BLSOM-based classification were calculated using three datasets (A, B, and C).

X

Figure 1. Phylogenetic classification of almost all known virus species. DegeTetra-BLSOM of 1
kb sequences derived from almost all virus genomic sequences (from 97 families). Lattice points

that contain sequences only virus family are indicated in colors; those that include more than one

category are indicated in black.

Virus group-BLSOM was shown in Figure 1.

After de novo assembly, contigs longer than 300 bp were
mapped using Virus group-BLSOM. The mapping was
conducted by finding the lattice point with the minimum
Euclidean distance in the multidimensional space and was
assigned to Virus group-BLSOM on the basis of statistical
tests. To taxonomically classify the contigs that could not be
assigned using Virus group-BLSOM, Kingdom-BLSOM was
employed.

To validate accuracy of BLSOM analysis, test data sets
were created from three datasets (A, B, and C) were prepared
from the viral and non-viral (eukaryotic and prokaryotic)
sequences deposited in DDBJ/EMBL/GenBank. The datasets
A, B, and C contained BLAST-identified viral sequences with
lengths ranging between 300-1,000 bp, 500-1,000 bp,

750-1,000 bp, respectively. When the dataset C was tested,
approximately 80% of the fragments were correctly detected
and approximately 95% of the fragments were correctly
classified into the corresponding taxa by Kingdom-BLSOM
at kingdom level. Furthermore, about 80% of these viral
sequences were assigned to the corresponding taxa at the

family level with accuracy (Table 1).

3.2 Application to detect virus genome in metagenomic

sequences obtained from Tick metagenome sequences

In the report of this year, we focus on the study that has
been conducted under the collaboration with Prof. Sugimoto’s
group (Division of Collaboration and Education, Research

Center for Zoonosis Control, Hokkaido University) and
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Figure 2. Proportion of kingdom taxonomy levels of the female and male samples by using Kingdom-BLSOM.

recently published by Journal of Veterinary Medical Science
[9].

We focused on investigating a diversity of tick viral
populations, which may contain as-yet unidentified viruses.
After metagenomic sequencing, a total of 507 and 324 contigs
were yielded from female and male of Ixodes persulcatus
ticks samples, respectively, with a length of over 300 bp.
BLSOM analysis of these contigs showed that about half of
the contigs fell on the clusters of viruses (Figure 2). Only
2.0% (10/507) and 2.5% (8/324), from female and male
samples, respectively, were not locatable in the BLSOM map
(Figure 2). Sequences of double strand (ds) DNA viruses were
occupied nearly 50% of viral contigs from female and male
samples.

In further analysis, sequences related to several insect virus
families were identified; that is, Ascoviridae, Baculoviridae,
Closteroviridae, Iridoviridae, Polydnaviridae and Poxviridae.
Biological interactions between human or animal pathogens,
their vector arthropods and their own viruses, have been
reported, and such interactions can be utilized for disease
control in the fields of agriculture and medicine.

This is one of the advantages of BLSOM, when it is
applied to microbiomes composed of poorly characterized and
highly diversified organisms [2]. About half of the contigs
were assigned to viruses using BLSOM, and only a small
percentage of the contigs could not be assigned to any
organisms (Figure 2), which supports that BLSOM is

theoretically advantageous in detecting and classifying

previously unknown viruses over the homology-based search.

4. Conclusion

Large-scale metagenomic analyses using recently released
next-generation sequencers are actively underway on a global
basis, and the obtained numerous environmental sequences
have been registered in the public databases. Large-scale
computations using various, novel bioinformatics tools are
undoubtedly needed for efficient knowledge-findings from the
massive amount of sequence data.

The present BLSOM is an unsupervised algorithm that can
separate most sequence fragments based only on the similarity
of oligonucleotide frequencies. Unlike the conventional
phylogenetic estimation methods, the BLSOM requires no
orthologous sequence set or sequence alignment, and
therefore, is suitable for phylogenetic estimation for novel
gene sequences. It can also be used to visualize an
environmental microbial community on a plane and to
accurately compare it between different environments.

In summary, the oligonucleotide composition-based
classification method, BLSOM, can be applied to studies of
medical and veterinary important vector-arthropods, such as
mosquito and fly. It should have great potential for mounting
effective programs against vector-borne emerging infectious

diseases.
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