せん断乱流中における乱流プラントル数に及ぼす大規模構造の影響

課題責任者

酒井 康彦 名古屋大学大学院工学研究科

著者

酒井 康彦*', 伊藤 靖仁*', 岩野 耕治*', 高牟礼 光太郎*', 檜垣 秀一*',

大西 領*², 松田 景吾*²

*¹名古屋大学大学院工学研究科, *²海洋研究開発機構地球情報基盤センター

せん断乱流は大気海洋中などの自然界および各種工業装置の中で頻繁に見られ、この乱流場における運動量輸送 とスカラ輸送の詳細を調べることは工学的に重要である.本研究では大規模渦の動的構造が運動量輸送とスカラ 輸送の特性,特に乱流プラントル数に与える影響やその物理的な機構を,空間的に発達する自由せん断混合層の 直接数値シミュレーションを行うことで明らかにした.計算の結果,非相似領域にあたる大規模構造が支配的な 乱流混合層の上流側では,中心軸上における運動量輸送とスカラ輸送に相違が見られることが明らかになった. これは運動量は逆勾配方向の輸送効果が生じるのに対して,スカラ輸送では全波数領域で順勾配方向に輸送され るために,結果的に運動量輸送とスカラ輸送の駆動力に違いが生じ,乱流プラントル数の低下を引き起こすこと が明らかになった.一方下流の自己相似領域では,主流方向位置に関わらず乱流プラントル数はPrT=0.78のほ ぼ一定値を取った.

キーワード:混合層,スカラ拡散,乱流プラントル数,DNS,遷移

1. 緒論

せん断乱流は自然界および各種工業装置の中で頻繁に 見られ、この乱流場における運動量輸送とスカラ輸送の 詳細を調べることは工学的に重要である。

せん断乱流において、運動量輸送とスカラ輸送の駆動 カの差は渦拡散係数 v_T と乱流拡散係数 α_T の比で定義さ れる乱数プラントル数 Pr_T (= v_T / α_T) によって評価され る. 過去に Pr_T = const を仮定したいくつかの乱流モデル が開発されてきているが、様々なせん断乱流中で異なっ ている. これらの乱流場の乱流プラントル数の値は流動 場や流入条件に依存しており、おおよそ 0.5 < Pr_T < 1.0 の値を取ることが知られている.

乱流プラントル数が乱流場によって変化する原因に ついては、これまでにも調査されてきた。Fiedler[1,2] は 大規模渦の存在が Pr_T に影響すると考え、大規模渦が支 配的な二次元せん断乱流における運動量とスカラ量の 輸送を調査した。その結果、大規模な渦運動によって熱 が運動量よりも積極的に輸送されることを明らかにし た。Chambers 他[3]は、乱流場が大規模渦の動的構造に よって支配されるとき、一般的な乱流場の乱流プラント ル数 ($Pr_T = 0.5 \sim 1.0$) よりも小さい値を取ることを示し た。

ここで、せん断流の流動場や初期条件の違いは、大規 模渦の動的構造に影響を及ぼす[4,5]. この事実からも、 Fiedler[1,2]の主張は理にかなっていると言える.しかし、 大規模渦の動的構造が運動量輸送とスカラ輸送の特性、 特に乱流プラントル数に与える影響やその物理的な機 構については依然として明確に言及されていない.

そこで本研究では、空間的に発達する自由せん断混合 層の直接数値シミュレーションを行い、ケルビン-ヘル

Fig. 1 Schematic of computational domain.

ムホルツ不安定性によって誘起された大規模渦の動的 構造が運動量輸送とスカラ輸送の特性,特に乱流プラン トル数に及ぼす影響を調べた.

2. 直接数值計算

本研究では Takamure 他[6]で使用されたデータを用いて 解析を行った. Fig. 1 に計算領域の概略図を示す. 座標 軸は、流体流入中心部を原点とし、下流方向にx, 鉛直 方向にy, 水平方向にz と定義した. 計算領域は $L_x \times L_y \times$ $L_z = 2.1L \times L \times 0.8L$ の直方体である. ここで, L は鉛直方 向の計算領域長さである. 計算領域の格子点数は, $N_x \times$ $N_y \times N_z = 2,210 \times 1,350 \times 780$ である. 計算格子はx, z方向 に等間隔格子, y方向に関してはy = 0 近傍が密となる 不等間隔格子とした. xおよびz方向の計算格子間隔は, 0.001Lの一定値である. また, y方向の計算格子間隔は y = 0付近でおおよそ 0.0004Lの最小値を取る. 本計算の 空間解像度は全領域において 2.7 η よりも小さい (ここ で、 $\eta = v^{3/4} \varepsilon^{-1/4}$ 、 η は Kolmogorov 長、v は動粘性係数、 ε はエネルギー散逸率). 断面平均流速 $U_0 (=(U_1+U_2)/2) \ge L_y$ によって無次元化した時間刻みを $\Delta t=5.7 \times 10^4 \ge 10^2 \ge 10^2 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^2 \ge 10^2 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^2 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^2 \ge 10^4 \ge 10^4 \ge 10^4 \ge 10^2 \ge 10^2 \ge 10^2 \ge 10^2 \ge 10^4 \ge 10^2 = 10^2 = 10^2 \ge 10^2 = 10^2 = 10^2$

本研究の初期条件はIto他[7]¹の実験の流入条件を参考 にして与えられた. 流入部(x=0)において, y=0を境に して上層および下層の主流方向一様流速はそれぞれ U_1 = 2.0, $U_2 = 1.0$ ($\Delta U = U_1 - U_2 = 1.0$) とした. さらに, 乱 流化を促進させるため, 初期条件における主流方向の流 速には 0.02 ΔU の大きさの主流方向のランダムノイズを 加えた. 断面平均流速(U_1+U_2)/2 と L に基づくレイノル ズ数は Re = 10000 とした. 上層流と下層流のスカラ濃度 は各々, $C_1 = 1.0$, $C_2 = 0$ とした. スカラ場はパッシブ な状態を仮定し, 運動量およびスカラ輸送の非相似性の 比較を行うため, 分子プラントル数はPr = 1.0 とした.

流動場およびスカラ場の支配方程式は、非圧縮性流体 に対する連続の式、Navier-Stokes 方程式および物質の移 流拡散方程式である.支配方程式の数値解法には、部分 段階法を用いた.時間進行には三次精度の Runge-Kutta 法および Crank-Nicolson 法を用いた.空間離散化には、 *x、z*方向に四次精度中心差分、*y*方向に二次精度中心 差分を用いた.Poisson 方程式は共役勾配法を用いて解 いた.計算格子にはスタガード格子を用いた.境界条件 は、計算領域上下境界にスリップ条件、左右境界に周期 境界条件、流出境界に粘性対流流出条件とした.

3. 計算結果

Figs. 2(a), (b)に x-y 断面における瞬時の主流方向流速 およびスカラの分布を示す. 瞬時の主流方向速度分布 ((Fig.2 (a)) から, 混合層厚さが下流に進むほど増加し, 複雑に混合していることがわかる. 瞬時スカラ分布 ((Fig.2 (b)) もまた,下流方向に混合層厚さが増加するが, その分布の様子は主流方向速度分布とは明らかに異な っている.

次に,運動量およびスカラ輸送の駆動力の差を議論するために,乱流プラントル数 *Pr_T*を導入する.ここで, *Pr_T*は次式のように定義した.

$$Pr_t = \frac{v_t}{\alpha_t} = \frac{-\overline{u'v'}/(d\overline{U}/dy)}{-\overline{v'c'}/(d\overline{C}/dy)}$$
(9)

上式で, \overline{U} , \overline{C} はそれぞれ x 方向平均速度およびスカラ の平均値を示す. また u', v', c'は各々x 方向変動速度 成分, y方向変動速度成分, 変動スカラ成分を示す.

Fig. 3 (a) に Pr_T, v_T, および a_T の中心軸上における主流 方向変化を示す.ただし、-<u>u'v'</u>は時間平均レイノルズ せん断応力を, -<u>v'c'</u>は時間平均鉛直方向スカラフラッ クスを示す. また, $d\overline{U}/dy$ および $d\overline{C}/dy$ はそれぞれ鉛直 方向に対する平均速度勾配および平均スカラ勾配であ る.図より, Pr_Tは x/L < 1.4 まで下流方向に変化するが, x/L > 1.4 で $Pr_T = 0.78$ の一定値を示すことがわかる. 発 達したさまざまな乱流場では 0.5 < Pr_T < 1.0 の値を取る ことが知られており、本研究における x/L > 1.4 での Pr_T はその範囲内である. この時、 $v_T \ge \alpha_T$ の値は、x/L > 1.4で下流方向にほぼ線形的に増加していることがわかる. 次に, Figs. 3 (b), (c)に, Pr_Tに含まれる要素を分解して示 した. $d\overline{U}/dy$ および $d\overline{C}/dy$ は x/L = 0.1 で, $-\overline{u'v'}$ およ び- $\overline{v'c'}$ はx/L=0.4でそれぞれ最大値をとり、それよりも 下流に進むにつれて、単調に減衰する.この時、 (dŪ/dy)/(dŪ/dy) およびu'v'/v'c'はともに x/L>1.4 でほ ぼ一定になる.

Fig. 2 Instantaneous images of the (a) streamwise velocity and (b) scalar on x-y plane (z=0).

Fig. 3 Streamwise distributions of the (a) Pr_T , v_T , and α_T , (b) $d\overline{U}/dy$, $d\overline{C}/dy$, and $(d\overline{U}/dy)/(d\overline{C}/dy)$, and (c) $-\overline{u'v'}$, $-\overline{v'c'}$, and $\overline{u'v'}/\overline{v'c'}$ at the center (y=0).

Figs. 4 に,無次元化された $u' \ge v'$ および $v' \ge c'$ の結合 確率密度関数分布を示す.Figs. 4 (a)-(c)に示す $u' \ge v'$ の 結合確率密度関数分布は、いずれの流下位置においても 負の相関をもち、類似の分布を示す.Figs. 4 (d)-(f)に示 す $v' \ge c'$ の結合確率密度関数分布もまた負の相関を取 るが、 $x/L = 0.78 (x/\delta_U = 160)$ および $x/L = 1.38 (x/\delta_U = 283)$ の流下位置では、図中の[A] \ge [B]で示すような特異的な 分布が見られた.ここで、[A] \ge [B]はそれぞれ $C = 1 \ge$ C = 0に対応する.この特異的な分布は $u' \ge v'$ の結合確 率密度関数分布 (Figs. 4 (a), (b))には見られない. $x/L = 1.95 (x/\delta_U = 400)$ において、 $v' \ge c'$ の結合確率密度 関数分布には特異的な分布はほぼ見られず, $u' \ge v'$ の 結合確率密度関数分布 とほぼ同様の分布を示した.

4. 結論

本研究では、空間的に発達する自由せん断混合層の直接 数値シミュレーションを行い、大規模渦の動的構造が乱 流プラントル数に及ぼす影響を調べた.主な結論とし て、非相似領域にあたる大規模構造が支配的な乱流混合 層の上流側では、運動量輸送とスカラ輸送に相違が見ら れることが明らかになった.これは、運動量の逆勾配方 向の輸送効果が生じるが、スカラ輸送では全波数領域で 順勾配方向に輸送されるために、結果的に運動量輸送とス カラ輸送の駆動力に違いが生じるためである.一方下流 の自己相似領域では、主流方向位置に関わらず乱流プラ ントル数は $Pr_T=0.78$ のほぼ一定値を取った.

謝辞

本計算は海洋研究開発機構・地球シミュレータセンター のスーパーコンピュータ(NEC SX-ACE)を用いて行わ れた.また、本研究の一部は科研費(No.18H01369)の 援助を受けて行われた.

文献

- Fiedler, H. E., "ransport of heat across a plane turbulent mixing layer", Advances in Geophysics, Vol.18, pp. 93-109 (1975).
- [2] Fiedler, H. E., "On turbulence structure and mixing mechanism in free turbulent shear flows," Turbulent Mixing in Nonreactive and Reactive Flows, pp. 381-409 (1975).
- [3] Chambers, A., Antonia, R., Fulachier, L., "Turbulent Prandtl number and spectral characteristics of a turbulent mixing layer", International Journal of Heat and Mass Transfer, Vol. 28, pp. 1461–1468 (1985).
- [4] Slessor, M. D., Bond, C. L., Dimotakis, P. E., "Turbulent shear-layer mixing at high Reynolds number: effects of inflow conditions", Journal of Fluid Mechanics, Vol. 376, pp. 115-138 (1998).
- [5] Pickett, L. M., Ghandhi, J. B, "Passive scalar mixing in planar shear layer with laminar and turbulent inlet condition", Physics of Fluids, Vol. 14, pp. 985-998 (2001).
- [6] Takamure, K., Ito, Y., Sakai, Y., Iwano, K., Hayase, T., "Momentum transport process in the quasi self-similar region of free shear mixing layer", Physics of Fluids, Vol. 30, 015109 (2018).
- [7] Ito, Y., Nagata, K., Sakai, Y., Terashima O., "Momentum and mass transfer in developing liquid shear mixing layers", Experimental Thermal and Fluid Science, Vol. 51, pp. 28-36 (2013).

Fig. 4 Joint probability density functions of (a-c) u' and v' and (d-f) v' and c'. (a, d) x/L=0.78 ($x/\delta_U = 160$), (b, e) x/L=1.38 ($x/\delta_U = 283$), (c, f) x/L=1.95 ($x/\delta_U = 400$) at the center (y=0)

Effects of Large-scale Structure on Turbulent Prandtl Number in Turbulent Shear Flows

Project Representative

Yasuhiko Sakai Dept. of Mechanical Systems Engineering, Nagoya University

Authors

Yasuhiko Sakai^{*1}, Yasumasa Ito^{*1}, Koji Iwano^{*1}, Kotaro Takamure^{*1}, Shuichi Higaki^{*1} Ryo Onishi^{*2}, Keigo Matsuda^{*2}

*¹Dept. of Mechanical System Engineering, Nagoya University

*² Center for Earth Information and Technology, JAMSTEC

It is of great importance to investigate momentum and scalar transfer in turbulent shear flows because they appear in a wide variety of situations in atmosphere and ocean, and many engineering applications. We have run a direct numerical simulation of a spatially developing shear mixing layer. The aim of this study is to clarify the effects of the large-scale structure on the turbulent Prandtl number Pr_T . It is revealed that Pr_T takes a small value ($Pr_T \sim 0.5$) in the upstream region, where the large-scale structure clearly exists. In the downstream region, on the other hand, Pr_T takes nearly a constant value of 0.78. The existence of fluid mass of C=0 and 1.0 significantly influences the change of Pr_T in the streamwise direction.

Keywords : Mixing layer, Scalar diffusion, Turbulence, DNS, Transition

1. Introduction

It is of great importance to investigate momentum and scalar transfer in turbulent shear flows because they appear in a wide variety of situations in atmosphere and ocean, and many engineering applications. Similarity between momentum and scalar transfer in turbulent shear flows is often represented by the turbulence Prandtl number Pr_T , which is defined by the ratio of the eddy diffusivity coefficient v_T and turbulent scalar diffusivity coefficient α_T . In this paper, we investigate the effects of the large-scale structure on Pr_T , in a turbulent shear mixing layer.

2. Direct Numerical Simulation

The present study used the data set obtained in Takamure et al.[1] Figure 1 shows the schematic of the computational domain. It has a size of $L_x \times L_y \times L_z = 2.1L \times L \times 0.8L$ resolved by $N_x \times N_y \times N_z = 2,210 \times 1,350 \times 780$. As the inlet condition, the upper stream and lower stream are given as $U_1 = 2.0$ and $U_2 = 1.0$ ($\Delta U = U_1 - U_2 = 1.0$), respectively. The Reynolds number based on the average velocity (= $(U_1+U_2)/2$) and *L* is *Re* =10000. The initial scalar values for the upper and lower streams are set to $C_1 = 1.0$ and $C_2 = 0$, respectively. The molecular Prandtl number was set to Pr = 1.0.

The governing equations were solved by fractional step method. The 3rd-order Runge-Kutta method and Crank-Nicolson method were employed for time marching. A 2nd-order central difference scheme was used for discretization in the x and z directions, while 4th-order central difference scheme was used in the y direction. For more details, please refer Takamure et al. [1]

Fig. 1 Schematic of computational domain.

3. Results and discussion

Figure 2 (a) shows the streamwise distributions of Pr_T , α_T , and v_T . Pr_T changes in the region of x/L<1.4. In the further downstream region, Pr_T takes a constant value of $Pr_T=0.78$. It is known from past studies that, Pr_T takes a value from 0.5 to 1.0 in various turbulence fields for fully-developed turbulence. To investigate in more detail, we show $d\overline{U}/dy$, $d\overline{C}/dy$, and $(d\overline{U}/dy)/(d\overline{C}/dy)$ in Fig. 2 (b) and $-\overline{u'v'}$, $-\overline{v'c'}$, and $\overline{u'v'}/\overline{v'c'}$ in Fig. 2 (c), respectively, because they consist of α_T and v_T . Here \overline{U} and \overline{C} are the mean velocity and concentration, respectively. Also u', v', and c' are respectively the streamwise and vertical velocity fluctuations and scalar fluctuation. These figures indicate that the variation of Pr_T is mainly caused by the difference in the distributions of $\overline{u'v'}$ and $-\overline{v'c'}$. Therefore, the joint probability density functions (JPDFs) for these terms were calculated.

Figures 3 shows the JPDFs for u' and v' and for c' and v'. Here, u', v', and c' are normalized by the root mean square values of themselves. The JPDFs of u' and v' take a negative correlation and a similar distribution at each downstream location (x/L=0.78, 1.38, and 1.95). The JPDFs of c' and v' show generally similar distributions but, in the upstream region (x/L=0.78), there exists regions of C=0 and 1.0 in the scalar field. Although detailed explanation cannot be made here due to limitation of the pages, further analysis showed that large-scale structures contribute to this phenomenon.

4. Conclusion

The present study reveals that the existence of fluid mass of C=0 and 1.0 significantly influences on the change of Pr_T in the streamwise direction. This phenomenon appears in the region where the large-scale structure clearly exists.

Acknowledgement

The numerical simulation was performed at Earth Simulator (JAMSTEC). Part of the study is financially supported by Kakenhi (No. 18H01369).

References

 Takamure, K., Ito, Y., Sakai, Y., Iwano, K., Hayase, T., "Momentum transport process in the quasi self-similar region of free shear mixing layer", Physics of Fluids, Vol. 30, 015109 (2018).

Fig. 2 Streamwise distributions of the (a) Pr_T , v_T , and α_T , (b) $d\overline{U}/dy$, $d\overline{C}/dy$, and $(d\overline{U}/dy)/(d\overline{C}/dy)$, and (c) $-\overline{u'v'}$, $-\overline{v'c'}$, and $\overline{u'v'}/\overline{v'c'}$ at the center (y=0).

Fig. 3 Joint probability density functions of (a-c) u' and v' and (d-f) v' and c'. (a, d) x/L=0.78 ($x/\delta_U = 160$), (b, e) x/L=1.38 ($x/\delta_U = 283$), (c, f) x/L=1.95 ($x/\delta_U = 400$) at the center (y=0)