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We propose a super-resolution (SR) simulation system that consists of a physics-based meteorological simulation and an SR
method based on a deep convolutional neural network (CNN). The CNN is trained using pairs of high-resolution (HR) and
low-resolution (LR) images created from meteorological simulation results for different resolutions so that it can map LR
simulation images to HR ones. The proposed SR simulation system, which performs LR simulations, can provide HR
prediction results in much shorter operating cycles than those required for corresponding HR simulation prediction system.
We apply the SR simulation system to urban micrometeorology, which is strongly affected by buildings and human activity.
Urban micrometeorology simulations that need to resolve urban buildings are computationally costly and thus cannot be
used for operational real-time predictions even when run on supercomputers. We performed HR micrometeorology
simulations on a supercomputer to obtain datasets for training the CNN in the SR method. It is shown that the proposed SR
method can be used with a spatial scaling factor of 4 and that it outperforms conventional interpolation methods by a large
margin.

Keywords : super-resolution, deep learning, building-resolving urban micrometeorology, multi-scale
data assimilation, IoT

1. Introduction

Heat stress is a serious social problem that will become
increasingly serious due to the combination of the heat island
effect, global warming and society aging. We have developed
a building-resolving computational fluid dynamics model that
can simulate the urban micro-meteorology with meter-level
spatial resolutions. The simulation model can be used for the
assessment and mitigation of the heat environment in urban
streets with considering the influence of urban buildings and
tree crowns on flows and radiations. For example, our model
has been actually used for heat mitigation planning by city
governments. For further applications, the extensive
simulation cost is a serious bottle neck. It takes long elapsed
times to run the urban micro-meteorology simulations even
on supercomputers. Thus, such micro-meteorology simulation
cannot be run for real-time operation purpose.

This study develops an integrated technology of the HPC
and artificial intelligence (AI) for real-time operational urban
micrometeorology simulations with meter-level spatial
resolution. Such simulations would facilitate real-time heat
mitigation for individuals and urban drone logistics.

2. Super-Resolution Simulation
Figure 1 shows the proposed SR (super-resolution)
simulation system [1]. HR (high-resolution) numerical

simulations provide better predictions than those obtained
using LR (low-resolution) simulations but are more
computationally expensive. The SR simulation system
consists of an LR simulation and an SR method that maps the
resultant LR prediction images to HR ones. This combination
provides predictions that are as good as those obtained using
the corresponding HR simulation with a much lower
computational cost.

HR simulation

!

HR results

SR simulation system training

LR simulation

I

LR pritions

HR predctions

Fig.1 : Concept of super-resolution (SR) simulation system for
operational real-time prediction. Instead of performing
high-resolution (HR) simulations to obtain HR results,
low-resolution (LR) simulations are performed. The obtained
LR results are converted into HR ones via SR mapping with a
deep convolutional neural network (CNN), SRCNN [2],
trained using the dataset obtained from HR simulations.
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3. Results and Discussion

We use a multiscale atmosphere-ocean coupled model
named the Multi-Scale Simulator for the Geoenvironment
(MSSG)[ 3-6]. The MSSG covers global, meso-, and urban
scales. For urban scales, the atmospheric component of
MSSG (i.e., MSSG-A) can be used as a building-resolving
large-eddy simulation (LES) model coupled with a
three-dimensional radiative transfer model [5].

We performed LESs for a Tokyo metropolitan built-up area.
The Tokyo domain was centered at 35.680882°N and
139.767019°E and covered a 2 km x 2 km horizontal area
with a 5-m horizontal resolution. The domain height was set
to 1,500 m and 151 vertical grid points was used. The vertical
grid spacing below the height of 500 m was set to 5 m
uniformly, while the spacing above was extended
continuously.

To focus on heat mitigation, the LESs were performed for
hot summer hours in which the maximum hourly temperature
exceeds 35°C in the years 2013—2017. Each LES was run for
each targeted hour. The results from first 10min time
integrations were discarded and the rest 50min results were
analyzed and used to obtain l-min-average values. We
obtained 4,300 sets of spatial distributions of 1min-average
temperature at 2m height.

Figure 2 shows an example of SR mapping. The HR (5-m-
resolution) images are recovered from the LR
(20-m-resolution) image. The SRCNN-derived HR image
successfully shows small structures (see circled areas in the
figure) that are blurred in the LR image. It is confirmed that
the SRCNN recovers contrasts in those small structure clearer
than the bicubic interpolation, leading to better agreement

with the ground-truth.

Smmﬁ

(¢) BICUBIC

Sl i

N

y

{psNR=37
M RvisE=0.2K

4 PSNR=36
RMSE=0.3K I S

Fig.2 : Example of the super-resolution downscaling for the
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Tokyo domain. (a) high-resolution (5-m resolution) result of

2-m height temperature (ground truth) for 15:30 JST on 25
July, 2017, (b) low-resolution (20-m resolution) result, (c)
high-resolution result derived with bicubic interpolation and
(d) SR-derived high-resolution mapping result.

4. Conclusions
We proposed the SR simulation system, that consists of a
physics-based prediction simulation and SR downscaling with
a deep CNN. In this study, we performed building-resolving
LESs using MSSG with a 5-m spatial resolution for the center
of Tokyo, Japan. The training dataset for the CNN for the SR
method was created from the simulation results. We showed
that the proposed SR downscaling outperforms conventional
interpolation methods. A spatial scaling factor of 4 is feasible
for 2m-height atmospheric temperature. This scaling factor
shortens the simulation time by 256 (= 4*) times.

The results show that the integration of LR prediction
simulations and SR downscaling can produce HR prediction
results with a small computational cost and thus has the

potential to realize building-resolving urban
micrometeorological prediction with a real-time operating
cycle.
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