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This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for the
period 2005-2018 at 1.1° horizontal resolution obtained from the assimilation of multiple updated
satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2,
TES, MLS, and MOPITT satellite instruments. The reanalysis calculation was conducted using a
global chemical transport model MIROC-CHASER and an ensemble Kalman filter technique that
optimizes both chemical concentrations of various species and emissions of several precursors, which
was efficient for the correction of the entire tropospheric profile of various species and its year-to-year
variations. Comparisons against independent aircraft, satellite, and ozonesonde observations
demonstrate the quality of the reanalysis fields for numerous key species on regional and global scales,
as well as for seasonal, yearly, and decadal scales, from the surface to the lower stratosphere.

Keywords : Data assimilation, Air quality, Emissions

1. Introduction

As a consequence of rapid global economic development,
along with governmental regulations, air pollutant emissions
have been changing dramatically in many regions. These
emission changes have led to substantial variations in air
quality and climate over the past decades. A long-term record
of atmospheric composition is essential to comprehend the
impact of human activity and natural processes on the
atmospheric environment and its effect on air quality, human
health, ecosystems, and climate. Various measurements, e.g.,
ground-based, ozonesonde, and satellite-retrieved
measurements, have been employed for assessing
geographical, vertical, and temporal variations in atmospheric
composition.

Chemical data assimilation can help mitigate the limitations
of current observing systems using models to propagate
observational information in time and space from a limited
number of observed species to a wide range of chemical

components, including surface concentrations and emissions.
Reanalysis is a systematic approach to create a long-term data
record consistent with model processes and observations,
using data assimilation. To improve the understanding of
emission variability and the processes controlling the
atmospheric composition, chemical reanalysis products have
been generated by integrating various satellite measurements.
Using an ensemble Kalman filter (EnKF) data assimilation
technique, Miyazaki et al (2015) simultaneously estimated
concentrations and emissions of various species for an
eight-year tropospheric chemistry reanalysis (TCR-1) for the
years 2005-2012. The TCR-1 framework based on the
AGCM-CHASER (Sudo et al., 2002) and MIROC-CHASER
(Watannabe et al., 2011) models has been used to provide
comprehensive information on atmospheric composition
variability, understand variations in precursor emissions, and
to evaluate bottom-up emission inventories (Miyazaki et al.,
2012a,2012b, 2014, 2017, Miyazaki and Eskes, 2017).
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Figure 1 Time series of the monthly mean ozone concentration obtained from ozonesondes (black), control run (blue),
and reanalysis (red) averaged between 850-500 hPa (upper row), 500200 hPa (center row), and 200-90 hPa (lower
row). From left to right the results are shown for the SH high latitudes (565-90°S), SH mid-latitudes (15-55°S),
tropics (15°S-15°N), NH mid-latitudes (15-55°N), and NH high latitudes (55-90°N).

In this study, we produced an updated chemical reanalysis
(TCR-2) developed based on an improved EnKF data
assimilation system. The TCR-2 performance has been
evaluated against independent observations for limited time
periods in the KORUS-AQ aircraft campaign during
Apr-May 2016 (Miyazaki et al., 2019) and over remote
oceans using ship-borne measurements for the years
2012-2017 (Kanaya et al., 2019). The TCR-2 performance for
2007 has also been extensively evaluated against various
independent observations within the MOMO-Chem
framework (Miyazaki et al., 2020a). Huijnen et al. (2019)
quantitatively compared the TCR-2 with operational CAMS
reanalyses but for ozone only. In this study, we present the
detailed evaluation results of the TCR-2 performance for the
years 2005-2018 for many chemically reactive species and
aerosols in the troposphere, from the surface to the lower
stratosphere, at daily to decadal scales. The detailed results
will be described in a future publication (Miyazaki et al.,
2020b)

2. Method

The forecast model, MIROC-CHASER (Watanabe et al.
2011), contains detailed photochemistry in the troposphere
and stratosphere by simulating tracer transport, wet and dry
deposition, and emissions. The model calculates the
concentrations of 92 chemical species and 262 chemical
reactions (58 photolytic, 183 kinetic, and 21 heterogeneous
reactions). Data assimilation applied here is based upon on an
EnKF approach. Because of the simultaneous assimilation of
multiple-species data and because of the simultaneous
optimization of the concentrations and emission fields, the
global distribution of various species is considerably modified

in our system. This propagates the observational information
between various species and modulates the chemical lifetimes
of many species, as demonstrated in our previous studies. An
observation operator is applied to assimilate individual
measurements to map the model fields into the retrieval space.

The assimilated measurements of ozone, NO2, CO, HNOS,
and SO2 were obtained from the OMI, SCIAMACHY,
GOME-2, TES, MLS, and MOPITT satellite instruments.
Surface emissions of NOx, CO, and SO2 and lightning NOx
sources and the chemical concentrations of various species are
simultaneously optimized using an EnKF data assimilation. In
this framework, the improved concentrations of various
species have the potential to improve the emission inversion,
whereas the improved representations of emissions benefit the
concentration reanalysis through a reduction in the model
errors.

3. Results

The evaluation results for various species reveal the benefit
of the assimilation of multiple-species data on the analysis of
both observed and unobserved species profiles on both
regional and global scales, for seasonal and decadal variations,
and from the surface to lower stratosphere. The reanalysis
ozone bias against the ozonesonde measurements was less
than 1.2 ppb in the lower troposphere except for the tropics
and less than 3.1 ppb in the middle and upper troposphere
except for the SH high latitudes, with temporal correlations
greater than 0.85 for most regions (Fig. 1). The improved
agreements in TCR-2 ozone from TCR-1 can be attributed to
a mixture of various upgrades, including assimilated
measurements and the forecast model performance and
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Surface CO: A priori Surface SO2: A priori

Figure 2 Global distributions of surface NOx emissions (in 10718 kgNm~2 s~1) (left columns), lighting NOx sources

(in 104 kgNm=2 s7!) (2nd columns), surface CO emissions (in 10710 kgCOm™=2 s ) (3rd columns), and surface

SO2 emissions (in 10713 kgSm2s71) (right columns), , and averaged over 2005-2018. The a priori emissions (upper

rows), a posteriori emissions (middle rows), and analysis increment (lower rows), i.e., the difference between the a

posteriori and the a priori emissions, are shown for each panel.

resolution. The assimilation also removed the global mean
model biases in the tropospheric NO2 column by about
84-93%, while reproducing the observed seasonal and
inter-annual changes for both industrialized and biomass
burning regions (r = 0.88-0.99). The reanalysis OH shows
improved agreements in global distributions over remote
oceans in comparison with the ATom aircraft measurements
from the surface to the upper troposphere, with the RMSE
reduction of up to 30% in the free troposphere and improved
north-to-south gradients. Constraints obtained for OH profiles
have a large potential to influence the chemistry of the entire
troposphere, which played an important role in propagating
observational information among various species and in
modifying the chemical lifetimes of many species. Although
no aerosol observations were assimilated, improved
representations  of aerosols against surface in-situ
measurements were obtained through corrections made to the
secondary aerosol formation.

The multi-constituent data assimilation framework is also
used to improve estimates of global emissions of NOx, CO,
and SO2 (Fig. 2). The analysis increment produced directly
via the chemical concentrations plays an important role in
reducing the model-observation mismatches that arise from
model errors other than those related to emissions. The global
total emissions averaged over the 14 years is estimated at
49.2 TgN/yr for surface NOx emissions, 1104 TgCOlyr for

surface CO emissions, 35.1 TgS/yr for surface SO2 emissions,
and 7.5 TgN/yr for lightning NOx sources, which are
substantially different from the a priori emissions
constructed based on bottom-up inventories. Chinese NOXx
emissions increased from 2005 to 2011, then rapidly
decreased after 2013, and then started to increase since 2016,
while exhibiting substantial spatial differences within the
country. Indian NOx emissions exhibit a continuous increase
by 30% over 14 years. For the United States and Europe, the
NOx emissions show a slowdown in NOx emission
reductions in the recent years. The SO2 emissions show
substantial reductions over China (by -6.1%f/yr), some parts of
Europe (up to -6%/yr on each grid), the eastern United States
(up to -3%/yr) and Japan (up to -8%l/yr), whereas strong
increases are found over India (up to 5%/yr), the Middle East
(up to 4%), and Mexico (about 4%), all of which are
associated with environmental policies and economic
activities. Lightning NOx sources exhibit strong year-to-year
variability, associated with multi-year scale climate variability
such as ENSO. The multi-year changes in emissions, along
with the changes in meteorological conditions, led to strong
increases in surface ozone over India (up to +0.25 ppb/yr) and
Southeast Asia (up to +0.4 ppb/yr), as well as in tropospheric
OH over the tropical western and eastern Pacific (up to
+1.2%/yr) and low latitudes polluted areas (0.9-1.4%/yr)
during 2005-2018. These results have strong implications on
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the impacts of human activity on air quality, human health,
and climate. Meanwhile, significant temporal changes in the
reanalysis can partly be attributed to discontinuities in the
observing systems.

4. Conclusion

The combined analysis of concentrations and emissions is
considered an important development in the tropospheric
chemistry reanalysis. Our comparisons suggests that
improving the observational constraints, including the
continued development of satellite observing systems,
together with the optimization of model parameterizations,
such as deposition and chemical reactions, will lead to
increasingly consistent long-term reanalyses in the future. An
increase in the forecast model resolution and an extension of
data assimilation to aerosols are expected to improve the
capability of chemical reanalysis for air quality and climate
applications. Techniques to reduce the influence of
discontinuities in the assimilated measurements and to
employ next generation satellite retrievals would also be
important developments in future chemical reanalyses.
Satellite data sets from a new constellation of LEO sounders
and GEO satellites (e.g., GEMS, TEMPO and Sentinel-4) will
provide more detailed knowledge of ozone and its precursors
for East Asia.
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