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Antipodal diffracted, compressional wave (P_dif f) data analyzed diametrically opposite three large earthquakes have uniformly
sampled 99% of the laterally heterogeneous zone above Earth’s Core—Mantle Boundary (D" in seismic nomenclature). We use for
the first time the seismic phase PKPag as a reference, which travels an identical mantle path as Py; ¢, thereby canceling common
mantle heterogeneity. Essential to this research is the determination of the phase shift for Py at the antipode in order to measure
differential travel times of PKPas—Pg;s;. Utilizing the Earth Simulator, we have independently confirmed the m/4 polar phase
shift of Py;sf at the antipode. As the 99% global P, coverage fits prior Py studies dominated by northern hemisphere paths—
it implies that complementary, southern hemisphere paths must have comparable properties. Hence, the heterogeneous processes
already observed in D” may be broadly ascribed where D” coverage has been lacking or poorly resolved.

Keywords: Numerical modelling, Wave propagation, Core—Mantle Boundary

combined Fresnel zone for Py from these three

1. Introduction
events covers >99% of the CMB-D” spherical shell.

At the antipode of an earthquake, Earth acts like a

nearly spherical lens focusing seismic energy through 3. P45 and the Core-Mantle Boundary Region
an axis-symmetric region about the diameter between The lowermost mantle, termed D” for historical
the earthquake and its antipode (Figure 1). Antipodal reasons borders Earth’s liquid outer core. The region
observations [1-7] have the potential to illuminate has been found to be significantly and laterally
global Earth structure not observable elsewhere heterogeneous, and characterized by negative, near-
complementing traditional body-wave and free- zero, or positive seismic velocity gradients in different
oscillation seismic methods. regions sampled by seismic body waves.

PKIKP travels straight through the center of Earth, Prior P,;;; research has been limited to distances
byt is not the fastes} path_from an eart_hquake to the short of the antipode (< 160 A°) [8-34]. Theoretical
diametrically opposite anticenter or antipode. Rather, analyses of Py, include [13-18, 35-38].

P waves diffracted (Py;r) around the Core-Mantle
boundary (CMB) arrive earlier. The diffraction of P-
waves by the core was noted by Gutenberg [9]. Years
later, Gutenberg [10] hypothesized, “as an effect of the
concentration of energy near the anticenter...Thus it
follows that in great earthquakes the diffracted waves
could well be observed as far as the anticenter.”

4. Differential travel times and phase shifts

Differential travel times have the advantage of
removing common mantle heterogeneity. In this
analysis PKPag is the primary reference phase, sharing
the same ray surface in the mantle with Py;sr . Where
PKPag refracts into the core, Py; ¢ diffracts around the
2 Data core (Figure 1). Both phases join together again in
transiting through the mantle from the CMB.

PKIKP is not amplified at the antipode, nor does it
experience any phase shift in propagation. Both
PKPag and Py; ¢ are amplified (Rial & Cormier, 1980,
Butler, 1986). PKPag is phase shifted /2 radians in
propagation and experiences an additional polar phase
shift [39-41] of /4 radians at 180°. The origin of the
/4 polar phase shift at the antipode is the merger of
wavefields approaching (A<180°) the antipode (0°
shifted) and the wavefields departing (A>180°) the

The first observation of antipodal P4;rf was made
by Rial [1] for an Ms=7.1 New Zealand earthquake in
1968 observed at PTO, Spain, at 179.25°A distance,
and modeled by Rial & Cormier [2]. Butler [3]
measured a PKIKP-Py; differential travel time and
polarization at PTGA antipodal (179.9°A) to a
Mw=7.9 Minahassa Earthquake. This study extends
Butler [4], incorporating two additional large
earthquakes antipodal to TAM Algeria and Q1Z China,
and using PKPag as the Py, reference phase. The
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Earthquake

Outer Core

Core

Figure 1. Maps show the locations of earthquakes (red symbols) and corresponding antipodal stations (names
highlighted in red). The locations of the antipodal seismic stations are shown (yellow pins). Inset figure shows the
ray paths for PKIKP (violet), PKPAB (dotted red), and Py, (blue). Path segments are labeled in black. Py;ff and
PKPAB share the same P-wave ray parameter and path in the mantle, indicated by down-going P, and up-going P,.
The outer core segment of PKPAB is labeled Kag. The D” region at the base of the mantle is shown (orange), where
D"qirr is the CMB diffracted segment of Py; (. Although ray paths are shown in this cross-section, the antipodal

energy arrives from all azimuths as a ray surface.

antipode (90° shifted), combining at the antipode
(A=180°) to a net /4 or 45° phase shift.

The determination of differential seismic travel
times requires consistency in the phase of the
compared arrivals. To compare waveforms, the phases
must be adjusted to a common basis. Therefore, a key
question is whether or not Py; ¢ experiences the same

7 /4 radians, polar phase shift as PKPag.

5. P 455 polar phase shift computation

Brune [39] & Gilbert [42] both discussed the
applicability of the polar phase shift for normal modes.
In principle, since Py may be considered as a sum
of normal modes, the polar phase shift follows
naturally. Hill [41] viewed the polar phase shift (axial
caustic) as a ray-theoretical, high-frequency
phenomenon.

Since the polar phase shift of Py;¢r has not been
confirmed theoretically—bridging  from  high-
frequency optics to long-period surface-waves &
normal modes—we approached the problem
synthetically using the Spectra Element Method
(SEM) [5, 43-45]. By directly comparing Py;sr and
PKPag computed for a true, 3D spherical PREM
model at exactly 180°A diametrally opposite an
isotropic explosion source, we include any asymptotic,
frequency-dependent phase implicitly.

-20-5

In modeling the P4;¢f phase, we use a mesh with a
total of 13.5 billion global integration grid points,
which corresponds to an approximate grid spacing of
2.0 km along the Earth’s surface and provides for
synthetics seismograms accurate up to 3.5 seconds.

6. Pg4i55 polar phase shift measurement

The results of this synthesis are shown in Figure 2
for two alternatives: Py; ¢ either is polar phase shifted
/4 (45°) or not (0°). Firstly, [PKPag]_(—m/2) is
phase shifted by —m/2 radians (to account for the
PKPag propagation caustic) and compared directly
with Py;-r. No correction is made for a polar phase
shift. Since [PKPag]_(—m/2) implicitly contains the
m/4 polar phase shift, the concomitant fit to Pyff
stipulates that Py, implicitly contains the same polar
phase shift. Alternatively, [PKPag]_(—3m/4) is phase
shifted —3m/4 radians correcting for both the polar
phase shift and propagation caustic. Since
[PKPag ]_.(—3m/4) explicitly reversed the
PKPag (1t/4) polar phase shift, a close fit between
Pyirr and [PKPag]_(—3m/4) implies that Py;ff
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Figure 2(a) Synthetic displacement waveform

comparisons are computed for a spherical PREM
Earth model by the Spectral Element Method (SEM)
in order to resolve a potential polar phase shiftin Py; ¢ ¢
at the antipode, A=180°. Qualitatively, [PKPag]_(—m/
2) initially overlays Py;¢r, whereas [PKPag]_(—37/
4) fits poorly. The close waveform correspondence of
Pyirr and [PKPag]_(—m/2) breaks down ~15 seconds
later upon arrival of shorter-period components of
PKPag likely originating in D".
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Figure 2(b) The instantaneous phase is shown, derived
from the displacement components. Py; ;¢ (black) and
[PKPag]_(—m/2) (red) overlay one another. However,
Pyirr and [PKPag]_(—3m/4) (blue dotted) compare
poorly. Therefore, Py and [PKPag ]_(—7/2)
possess the nearly the same instantaneous phase at the
beginning of the P4;fswindow, corroborating a Py;ss
polar phase shift of (/4) at the antipode.

1182 1184

lacks the polar phase shift. However, since the fit is
poor the inference is that Py; ¢ does have a polar phase
shift.
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Instantaneous phase [46] is plotted in Figure 2b.
Similar to the comparison in Figure 2a, [PKPag]_(—1/
2) overlays Py;¢r, sharing the same phase relation.
Furthermore, [PKPag ]_(—3m/4) fits poorly.
Therefore, the instantaneous phases indicate that
[PKPag]_(—m/2) overlays Py and both share the
same polar phase shift. That this polar phase shift is %
is seen in comparison between antipodal observations
of PKIKP and PKPag in Figure 3 row 3. Since PKIKP
experiences no polar nor propagation phase shift, yet
matches PKPag phase shifted by (—m/2 —1/4) =
—3m/4 radians, confirms the antipodal polar phase
shift of /4 for PKPag, and hence an antipodal polar
phase shift of /4 for Py .

PTGA
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1Z
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1390 1900 1420

Figure 3.

(noted in lower right of inset) are shown for PTGA
(left column), TAM (center column), and QIZ (right
column). The rows show the waveform fits—
correlated by their initial peaks—among the Py,
PKIKP, and PKPag arrivals: (top) Py;rr & PKIKP;
(middle) Pyirr & PKPag; and (bottom) PKIKP &
PKPag. Within each inset legend, the phase shift
corrections applied to PKIKP or PKPag are indicated.
The energetic arrival of PKIKP following Pg;ff is
indicated by the arrow upwards. The close overlay of
PKIKP with PKPag in the bottom row shows that the
modeled (—m/2 —m/4) PKPag phase shift is
consistent with a (/4) polar phase shift at 180°A.

7. Pgir5 Or PKPag heterogeneity
The PKPag — Pyi55 time (Figure 1) is the difference
between the time along the outer core path (Kag) and



path of diffracted P in D" near the CMB (termed Dyjs
for convenience). The mantle paths (P), which are
nearly identical, are thereby subtracted. This gross
earth datum is independent of an Earth model. To
separate the contributions of Dgitr from Kag, we must
resort to an Earth model. This is reasonable since the
outer core is considered to be laterally homogeneous
and well mixed [47].

Since travel times are most sensitive to the ray
parameter at its turning point, allocating part of the
differential time to Kag, which bottoms in the middle
of the Outer Core, implies that the Core velocity is
modified. The middle of the Outer Core is far from the
possible heterogeneity at the CMB and 10CB.
Multiple seismic phases have the same ray parameter
and bottom at the same depth as PKPas—including
PKKSAB and SKKPAB (142°), SKPAB and PKSAB (140°),
SKSAC (105°)and PKKPag (1070), SKKSAC (1750)7
and thereby constrain the PKPag (180°) velocity at its
turning point. Nonetheless, there is no significant
evidence for heterogeneity within the middle of the
Outer Core [48-50].

Figure 4.
striped surface for the 1996 antipodal pair: PTGA,
yellow pin; Minahassa earthquake, red wavelet. The
yellow minor arcs mark the propagation path of the
Py;¢ ray sheet in D", highlighted at 5° intervals. The
left figures are rotated slightly to enhance the
curvature.

The Py;¢¢ Fresnel zone is projected as a

8. Fresnel zone of P g;¢f
The breadth of the Fresnel zone of Py, has been
considered in several studies [4, 23, 28, 32-34]. At the
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Figure 5. Tetrahedral views of Py;¢f coverage of the
CMB plot the overlapping Fresnel zones for the three
diametral axes. Center of projections clockwise from
top left: (90° 0°), (-30° 0°), (-30°, 120°), and (-30° -
120°). Individual ray sheets are plotted with 5° ray
spacing, where yellow corresponds with PTGA-Brazil,
green is for TAM-Tonga, and cyan is for Ql1Z-North
Chile. Note the slivers without coverage outlined in
orange east of South America (top right) and northeast
of Australia (lower left). The combined Py; - coverage
by PTGA, TAM, and QIZ encompasses 99.5% of the
CMB and D".

antipode, the Fresnel zone at the CMB encompasses
an annular zone between the small circles which
define the entry and exit of PKPag at the CMB. For
PTGA the Fresnel zone is shown in Figure 4 reflects
the substantial coverage of the CMB at the antipode.
However, the near-source and near-receiver “caps” of
the zone are not sampled.

The two additional antipodal pairs, TAM-Tonga
and QIZ—Chile, provide independent corroboration of
the insights gained from PTGA, and more importantly,
coverage of the CMB missed by PTGA Pgy;¢r. The
combined coverage of PTGA, TAM, and QIZ
envelopes is >99% of D” and the CMB (Figure 5).

Although we cannot illuminate CMB D” fine
structure with Py;f, the antipodal view afforded by
Pyirr and PKPag provides for a strong constraint on its
global, mean velocity characteristics. It follows that
the heterogeneities characteristic of CMB D" observed
where good seismological coverage is available may
also be ascribed where coverage has been lacking.
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9. Conclusion

The Earth Simulator has been utilized for
determining important, subtle phase shifts in seismic
waves diffracting in the base of the mantle around
Earth’s outer core—essential for measuring the global
mean velocity at the core-mantle boundary. This
global measure samples 99% of this strongly
heterogeneous region. This is the first constraint of
diffraction at the antipode, linking theoretical
asymptotic, frequency dependence. The next phase of
analysis will incorporate 3D structure within the Inner
Core to extend the methodology to five antipodal
diameters measuring propagation within and
diffraction around the Inner Core.
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