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In the Hyuga-nada region, which is located at the western end of the source region of the Nankai Trough earthquake, crustal
activities have been active in recent years. Therefore, based on the results of numerical simulation of earthquake generation
cycles, we investigated the possible scenarios around the Hyuga-nada. Then, we suggested that it is important to observe area
and strength of the locking condition on the plate interface in considering the possibility of the Nankai Trough earthquake
being triggered by the Hyuga-nada earthquake. Furthermore, we adopted a data assimilation method using the ensemble Kalman
filter for crustal deformation data of the long-term slow slip events beneath the Bungo channel to estimate slip evolution on the
plate interface. Numerical experiments showed that it is necessary to estimate the reliability of the obtained results by using not

only the ensemble average, but also the variation of each ensemble.

Keywords :
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1. Introduction

We are developing a program for data assimilation method to
estimating slip evolution on the subducting plate interface along
the Nankai Trough and the Japan Trench [1]. As part of this study,
we have conducted numerical simulations of earthquake
generation cycles along the Japan Trench [2]. By using these
simulation results, we have also conducted sequential
assimilation of crustal deformation data due to slip on the plate
interface, which adopted a data assimilation method. In this year,
we conducted additional numerical simulation of earthquake
generation cycle along the Japan Trench and the Nankai Trough.
Furthermore, numerical experiments of data assimilation using
Ensemble Kalman Filter (EnKF) [3] were conducted on the
crustal displacement of long-term slow slip events (L-SSEs)
beneath the Bungo channel along the Nankai Trough.

2. Numerical simulation of earthquake generation
cycle along the Nankai Trough

Based on our previous study [1], we conducted numerical
simulations of earthquake generation cycles along the Nankai
Trough. Seismic and aseismic events were modeled to represent
the release of slip deficit or backslip that accumulates during
interseismic period [4]. Such space-time variations in slip
velocity are assumed to be an unstable slip with a frictional
interface. We used a rate- and state-dependent friction law as an
approximated mathematical model for large-scale frictional
behavior on the plate interface [5]. We used a fault constitutive
law [6] that determines the slip rate for a given stress and a value

Earthquake generation cycle simulation, Nankai Trough earthquake, Hyuga-nada earthquake, Ensemble

of strength. In addition, we used an aging law [5, 7], which can
be considered as an evolution law for strength change, which
varies depending on the prior slip history.

In the Hyuga-nada region, which is located at the western end
of the source region of the Nankai Trough earthquake, crustal
activities have been active in recent years, such as long-term slow
slip events, shallow very-low-frequency earthquakes, shallow
low-frequency tremors, and M 5~6 earthquakes. Therefore, in
addition to the knowledge obtained in our previous studies of
numerical simulation of the earthquake generation cycle along
the Nankai Trough and the Japan Trench, based on the results
obtained by the new model, we re-examined the possible
scenarios in the Hyuga-nada. Frictional parameters were
assumed based on our previous studies along the Nankai Trough
[8,9, 10]. We used realistic three-dimensional (3D) geometry of
the subducting Philippine Sea Plate [11].

In our previous studies [9, 10], we obtained several scenarios
in which a M > 7.5 Hyuga-nada earthquake triggered a M > 8
Nankai Trough earthquake. In the frictional model, we added a
smaller unstable patch, which represented M ~ 7 earthquake with
recurrence interval of 30~40 years in the Hyuga-nada region.
Then, we investigated relationship among three types of events;
the M > 8 earthquake (Nankai earthquake), M > 7.5 earthquake,
and M ~ 7 earthquake. As a result, there are scenarios in which
M > 7 Hyuga-nada earthquake triggered M~7 earthquake. These
earthquakes did not trigger a Nankai earthquake, but the M > 8
Nankai earthquake that occurred more than 80 years later
triggered a M > 7 Hyuga-nada earthquake. It can be said that M
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> 7 earthquake in the northern part of Hyuga-nada do not
necessarily trigger a M > 8 Nankai earthquake.

3. Numerical experiment of estimating slip evolution

In order to identify the validity and problems of a data
assimilation method for estimating slip evolution and frictional
parameters on the plate interface by using crustal deformation
data, and to obtain the knowledge necessary for improvement,
numerical experiments were carried out for a simple model of the
Bungo channel L-SSEs. We adopted an estimation method of
sequential assimilation by using EnKF [3]. Based on the method
for plane fault model, the calculation code had parallelized to
speed up the calculation process and improved the calculation of
stress change and surface deformation response to apply complex
plate geometry [12].

Using the parallelized code and the same 3D plate geometry
as Section 2 [11], we estimated slip evolution and frictional
parameters on the plate interface using crustal deformation data
obtained by L-SSEs occurring with recurrence interval of about
8 years in the Bungo Channel. A true model and 100 ensembles
were calculated in the same method as in the previous study [3].
The recurrence interval of L-SSEs in the true model is
approximately 8.3 years. The data period of each ensemble is 20
years, the assimilation interval is 20 days, and the observational
Global Navigation Satellite System (GNSS) stations of crustal
deformation were 89 GNSS Earth Observation Network System
(GEONET) stations located around the Bungo channel.

Assimilation was performed up to the shorter periods than the
entire data period, and thereafter the time evolution of slip was
calculated by using frictional parameters estimated at each
termination time of assimilation. As a result, after the first L-SSE,
each ensemble showed similar slip evolution. However, when the
assimilation was terminated at the timing when the average
values of frictional parameters close to the true value were
estimated, the ensemble average gave a better estimation of slip
evolution than when the assimilation period was longer. It is
necessary to judge the reliability of the obtained results by using
not only the average of all ensembles, but also the difference

among each ensemble.

4. Conclusion

Along the Nankai Trough, we conducted numerical simulation
of earthquake generation cycles in the Hyuga-nada, and
numerical experiments of estimating slip evolution and frictional
parameters on the plate interface using a data assimilation
method for the Bungo channel L-SSEs. We should improve both
the forward simulation and the assimilation methods to adopt
more realistic and complex scenarios including both M > 7
earthquakes and slow earthquakes. Then we will apply the
sequential data assimilation method to various scenarios that we
have accumulated so far and estimate slip evolution on the plate
interface.

Acknowledgement

Computational resources of the Earth Simulator and DA
system provided by JAMSTEC was used for all simulations. This
work was supported partly by the project “Research project for
compound disaster mitigation on the great earthquakes and
tsunamis around the Nankai trough region” of MEXT.

References

[1] Hori, T., M. Hyodo, R. Nakata, S. Miyazaki, and Y. Kaneda,
“A forecasting procedure for plate boundary earthquakes
based on sequential data assimilation”, Oceanography, 27 (2),
94-102 (2014).

[2] Nakata, R., T., Hori, M. Hyodo, and K. Ariyoshi, “Possible
scenarios for occurrence of M~7 interplate earthquakes prior
to and following the 2011 Tohoku-Oki earthquake based on
numerical simulation”, Scientific Reports, 6, 25704 (2016).

[3] Hirahara, K., and K. Nishikiori, “Estimation of frictional
properties and slip evolution on a long-term slow slip event
fault with the ensemble Kalman filter: numerical
experiments”, Geophys. J. Int., 219, 2074-2096 (2019).

[4] Rice, J. R., “Spatio-temporal complexity of slip on a fault”, J.
Geophys. Res., 98 (B6), 9885-9907 (1993).

[5] Dieterich, J. H., “Modeling of rock friction, 1. Experimental
results and constitutive equations”, J. Geophys. Res., 84(B5),
2161-2168 (1979).

[6] Nakatani, M., “Conceptual and physical clarification of rate
and state friction: Frictional sliding as a thermally activated
rheology”, J. Geophys. Res., 106(B7), 13347-13380 (2001).

[7] Ruina, A., “Slip instability and state variable friction laws”, J.
Geophys. Res. 88(B12), 10359-10370 (1983).

[8] Nakata, R., M. Hyodo, and T. Hori, “Numerical simulation of
afterslips and slow slip events that occurred in the same area
in Hyuga-nada of southwest Japan”, Geophys. J. Int., 190,
1213-1220 (2012).

[9] Nakata, R., M. Hyodo, and T. Hori, “Possible slip history
scenarios for the Hyuga-nada region and Bungo Channel and
their relationship with Nankai earthquakes in southwest
Japan based on numerical simulations”, J. Geophys. Res.,
119, 4787-4801 (2014).

[10] Hyodo, M., T. Hori, and Y. Kaneda, “A possible scenario for
earlier occurrence of the nest Nankai earthquake due to
triggering by an earthquake at Hyuga-nada, off southwest
Japan”, Earth Planet Space, 68,6 (2016).

[11] Baba, T, Y. Tanioka, P. R. Cummins, and K. Uhira, “The slip
distribution of the 1946 Nankai earthquake estimated from
tsunami inversion using a new plate model”, Phys. Earth
Planet Inter., 132, 59-73 (2002).

[12] Hyodo, M., and T. Hori, Annual report of “Research project
for compound disaster mitigation on the great earthquakes
and tsunamis around the Nankai trough region”, 3-9-@
(2019).

-21-6





