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1. Introduction

The vectors which are dealt with in physics are divided into
the contravariant and covariant vectors. Examples of
contravariant vector is the vorticity and the magnetic field in
MHD, while examples of covariant vector is the Lorentz force
and the gradient of the scalar quantity. It is easy to recognize the
contravariant vector, e.g., the fluid is swirling along the vorticity
vector, while it is not easy to recognize the covariant vector
because the covariant vector is recognized by the vector
orthogonal to the hyper plane associate with this vector
although the covariant vectors are equally important as the
contravariant vectors. This research aims to reveal the common
features of the covariant vectors.

2. Viscoelastic flow diluted by covariant polymers

Drag reduction (DR) by addition of small amounts of long-
chain polymers into Newtonian solvent is an important
theoretical and practical problem. Molecules of polymer in dilute
solution are commonly modeled as the dumbbells, i.e. sets of two
beads connected by a nonlinear spring. It is generally assumed
that the fluid surrounding the dumbbells moves affinely with an
equivalent continuum. The polymer chains, however, may slip
through the solvent which is normally observed with rigid
particles [1]. Actually, when complete affinity is assumed, the
elasto-inertial turbulence (EIT) regime arises [2] using the
FENE-P constitutive equation for the polymer stress. Molecular
motions may not precisely correspond to the macroscopic
deformation when straining is large [3], and slip may be
accounted for through slip parameter ¢ (0= =1). This rigidity
effect was considered in Hinch [4] assuming that o may not be
fixed but variable subjected to elongation and reorientation of the
dumbbells. We develop a new dumbbell model in which the
variation of ¢ is incorporated and elucidate its impact on the
energy transfer and DR.

We utilize the multi-scale BDS-DNS in which a mesoscopic
description of an ensemble of dumbbells is connected to a
macroscopic DNS of the solvent [5]. Non-affinity is introduced
by allowing the slippage of strand motion in the dumbbell model.
When o0, the governing equation for the end-to-end vector of
the dumbbell R becomes the upper convective derivative and R
is contravariant. R tends to become parallel to the vorticity vector
o and distributes along the vortex sheet. When non-affinity is
maximum « =1, it becomes the lower convective derivative and
R is covariant. R aligns orthogonally to the vortex sheet.

Using the steady solution for the governing equation of the
conformation tensor c;; (= R;R;), the production term for c;;,
P.(=(1-2 a) ¢;S}), is approximated as P. ~4 15 (1-2 )® Si Sy Si
[6], where Sj is the strain rate tensor and T; is the relaxation time.
The generation term of the solvent dissipation rate (&) is given as
P,~4v (1-2 a)® Si Sy Sji , where v is the viscosity. The strain
skewness Ss(=-Si Sy Sji) is predominantly positive. Thus, when
o=0, P.< 0 and P> 0. The contravariant dumbbells transfer the
elastic energy back into the solvent where it is then dissipated and
EIT arises. This energy transfer can be reversed only when Sg<0.
We use the eigenvalues of S (o7, o, 5), where o corresponds
to the eigenvector e¢; maximally aligned with @, the largest
remaining ones as o and e, and the smallest ones as o and e..
e; and e span the vortex sheet, while e. is perpendicular to the
sheet [6]. When o=0, R // e; or R // e+ and Ss<0 is achieved when
00, <0, oy <0. By altering the orientation of R from e to e,
large P. is restored. When o=1, R // e., P.°<Sg>0 and P, °<Sg>0.
The energy transfer can proceed to both elastic energy and
dissipation.

Evolution of R is governed by Q;R; which gives rotation of R
but preserves the length of R, and Sj; R; which yields stretching of
R, where Q) is the vorticity tensor. Because (;R; is independent
on ¢, we incorporate the reorientation of R due to €3;R; into the
renormalized value of a. The increment of « can be determined
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as o =-Co, (A ts) (RpR;Sip Qi) 2(R,RiSpSy) (Variable- o model),
where At is the time increment and Cy, is the coefficient.

The polymer stress tensor t; due to the force acting on the fluid
by the dumbbells is directly obtained by averaging over the
dumbbells in the configurational space. The FENE function is
applied. The linear interpolation scheme is applied for averaging
[5]. Transfer of the solvent energy to the polymers is evaluated
by the production term P. (=1; Sy).

We carried out three cases in the homogeneous isotropic
turblence with 128° grid points, T =2.4, Weissenberg number
Wi=10 and 10° dumbbells were dispersed. a was fixed to 0 in case
Fix-B, fixed to 1 in case Fix-A and the Variable-oc model was
used in case Variable-cx. In the length of the dumbbells |R| in the
three cases, not only |R| from Variable- o was not intermediate to
the two fixed cases, but the largest elongation was attained in
In this study, the steady state is sustained by
imposition of an external random force f;. The work provided by
the external force f;, u; f; the tails of PDF obtained in all cases
were decimated compared with the Newtonian case, i.e., steady

Variable-« case.

state is sustained by supplying smaller work due to f in
viscoelastic cases and DR is achieved. Solvent dissipation & was
smaller in Fix-A (& =0.226) than in Fix-B (0.263) and P, was
larger in Fix-A (P, =0.149) than in Fix-B (0.115). In Variable-c,
P, was close to Fix-A (0.146), while £ was between Fix-A and
Fix-B (0.243). DR exceeding Fix-B is obtained in Variable-c.

In the contravariant dumbbells, initially, the dumbbells with R
// es were responsible for large P, but later in time, P, generated
by R // es annihilates and P, by R // e; becomes predominant.
Large P, is restored by turning R from e to e:, and the elastic
energy accumulated upon the vortex sheets.

In the covariant dumbbells, the elastic energy concentrated in
the region outside and adjacent to the vortex sheets and P,
generated by R // e. was predominant. The dumbbells were
orthogonal to the vortex sheets and the sheet was under pressure,
leading to large DR [6].

3. Active scalar driven by covariant scalar gradient
stresses

Noting that another representative covariant element is the
gradient vector of the scalar, a new DR strategy applicable to the
air flow by applying the force caused by the stress formed by the
scalar gradient vectors is developed in this study.

The governing equations consist of the Navier-Stokes equation,
the convective diffusion equation for the scalar field 7" A uniform
mean scalar gradient 7=/"x3 is imposed in the x3 direction [7] and
T denotes scalar fluctuations. The stress Gy is defined as the
dyadic products of scalar gradient vectors as G °“gg; , where g;
= VT. The divergence of Gy was added to the momentum
equation. (referred to as the scalar gradient stress (SGS) model in
the following). We carried out DNS in forced homogeneous
isotropic turbulent flow using 1283 grid points, v=1/30, /=1 and
the time increment A=0.001.

Averaged values of the dissipation rate & was 0.147 in the
Newtonian case and 0.089 in SGS model. The work u; f; was
0.118 in the Newtonian case and 0.08 in the SGS model. The
stationary state was sustained by smaller work than in the
Newtonian case, DR is achieved in the SGS stress model.

Among the three principal stresses of G denoted as [Gy I«
(k=s,+,-), [Gy ] was predominant and large. The eigenvectors
corresponding to [Gy ] are denoted as Gi. The most dominant
principal stress force [Gj ). G- directed inward perpendicularly on
the vortex sheet. The pressure force was exerted by the SGS
stress on the vortex sheet and the sheet was under pressure.
Resistance of the sheet to their stretching is enhanced by this
pressure force. Thus, stretching and thinning of the sheets is
restrained and the energy cascade into the small scales is
annihilated, leading to DR. This result is similar to DR
mechanism found in the flow diluted with covariant polymers
shown in Section 2 [6]. The isosurfaces of scalar almost coincide
with the vortex sheet. In the SGS model, the vortex sheet
structures prevail compared with the Newtonian case. The scalar
dissipation & ( = v gig;) was decimated in the SGS model
(£60.810) compared with the Newtonian case (0.873) because
thinning in the thickness of the scalar was prevented.

4. Summary

Common features in the turbulent flows diluted with the
covariant additives are presented. Assessment was carried out in
the viscoelastic flow diluted by the covariant polymers and the
active scalar field driven by addition of covariant scalar gradient
stress. Both covariant polymers and scalar gradient vectors
aligned in the direction orthogonal to the vortex sheet and applied
the pressure force on the sheet. With sustainment of the sheet
structures, large drag reduction was achieved.
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