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Name Radiation SST Initial time
SSTV-RAD On 1D-diffusion®
X ; ; 00 UTC 21, 06 UTC 21, 12 UTC 21, 18 UTC 21, 00 UTC 22
SSTC-RAD On Linear interpolation®
- - - September 2018
SSTC-NORAD Off Linear interpolation
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An intense tropical cyclone (TC) often forms the secondary (or outer) eyewall outside the primary (or inner) eyewall
surrounding the eye (i.e., concentric eyewalls; CEs). After the secondary eyewall formation (SEF), the inner-eyewall cloud
dissipates rapidly, and the outer eyewall cloud gradually contracts (i.e., eyewall replacement cycle; ERC). Coincided with the
ERC, the radius of maximum wind and size in the TC change rapidly. Understanding the mechanism of the ERC is important
for numerical predictions of typhoon intensity and size. Recently, the roles of atmosphere-cloud radiation processes on the SEF
and ERC have been examined. Moreover, the radiative heating/cooling in the sea surface can influence the evolution of sea
surface temperature (SST), which is the most important factor for TC intensification. In the present study, sensitivity
experiments in a real typhoon using a high-resolution numerical model are performed to examine the roles of the radiation
processes and typhoon-radiation-ocean interaction on the SEF and ERC in the typhoon. The sensitivity experiments indicate
that the radiation processes (1) enhance the SEF in the cases without considering the SST evolution due to the radiative heating,
but (2) weaken the SEF in the cases permitting the SST evolution. It suggests that the SST cooling through the cutting-off of
the shortwave radiation in the sea surface can weaken the secondary eyewall precipitation in intense typhoons, and impact the

SEF and ERC.

Keywords: Supertyphoon, Aircraft observation, Cloud-resolving model, High resolution simulation, Concentric

eyewall

1. Introduction

Intense tropical cyclones (TCs) have a cloud-free area called
the "eye". The eye is surrounded by an eyewall. The maximum
wind speed of a TC is located near the eyewall radius. In intense
TCs, the secondary eyewall often forms outside the primary
(inner) eyewall (i.e., concentric eyewalls; CEs). Corresponding
to radii of the CEs, the tangential winds also have local peaks near
the eyewall radii. Once the secondary eyewall is formed, the
inner eyewall decayed, and the outer eyewall gradually contracts
(i.e., eyewall replacement cycle; ERC). The ERC can cause rapid
changes in the strong wind and size of the TC. Therefore,
understanding the ERC mechanism is important for the accurate
prediction of the intensity and size of the TC using numerical
models.

Key factors for the ERC have been proposed in some studies
previously. Recently, using cloud-resolving models, the roles of
atmosphere-cloud radiative heating/cooling on the ERC have
been studied. Tang et al. (2017) [1] indicated that the ERC can be
encouraged by the shortwave radiation in the moat (i.e., radii with
weak convection between the CEs). On the other hand, Trabing
and Bell (2021) [2] clarified that shortwave radiation has a
delaying effect on secondary eyewall formation (SEF) and ERC.
Moreover, sea surface temperature (SST), which is the most
important factor for typhoon intensification, can be evolved by
the radiative heating/cooling in the sea surface (hereafter called

"typhoon-radiation-ocean interaction"). However, the evolution
of SST by the radiative effects is not included in their numerical
experiments.

During our project period in 2019, we performed a numerical
simulation of Typhoon Trami (2018) using the Cloud-Resolving
Storm Simulator (CReSS 3.4.2; Tsuboki and Sakakibara 2002
[3]). Trami developed rapidly from 22 to 24 September 2018,
reaching its lifetime minimum central pressure of 910 hPa. Trami
had a CE structure and experienced an ERC during the mature
and decaying stages from 25 to 27 September 2018. The
simulation succeeded to capture the CE structure in agreement
with satellite observations. In the present study, to examine the
roles of the radiative heating/cooling and typhoon-radiation-
ocean interaction on the SEF and ERC, we perform numerical
experiments of Typhoon Trami using the CReSS model.

2. Model configuration and experimental design

The CReSS model is a three-dimensional, regional,
compressible non-hydrostatic model. The CReSS model uses a
terrain-following coordinate system in the vertical and calculates
the three-dimensional wind velocity components, pressure
perturbation, potential temperature perturbation, turbulent kinetic
energy, and the mixing ratios of water vapor, cloud water, rain,
cloud ice, snow, and graupel. The CReSS model does not use
cumulus parameterization. The short- and long-waves radiative
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heating/cooling in the model are calculated by the Rapid
Radiative Transfer Model (RRTM).

The model configuration and initial/boundary conditions are
mostly the same as our simulation in 2019. The model domain
was about 40° in the zonal direction x 40° in the meridional
direction x 26 km in height. The horizontal grid spacing was
uniformly 0.02° in both the zonal and meridional directions. The
vertical grid was a stretching vertical coordinate. The lowest grid
spacing was 50 m, and there were 70 vertical grids. The end of
the time integration was 0000 UTC on 28 September 2018.

To examine the roles of the radiative heating/cooling on the
SEF and ERC, three groups of sensitivity experiments are
designed as shown in Table 1: (1) SSTV-RAD, (2) SSTC-RAD,
and (3) SSTC-NORAD. The radiative heating/cooling are
included in SSTV-RAD and SSTC-RAD. SST in the model is
explicitly predicted (externally given) in SSTV-RAD (SSTC-
RAD/SSTC-NORAD). SST in SSTV-RAD can be evolved by a
vertical diffusion equation in the model ocean and the radiative
heating/cooling in the sea surface. Note that the vertical diffusion
equation does not include vertical turbulent mixing associated
with ocean currents. To find common features in each experiment,
we use ensemble members with different initialization times in
each group (Table 1). The spectral nudging is used to reduce the
large discrepancy of the typhoon track among the experiments.
The SSTV-RAD group is performed to examine the impacts of
the typhoon-radiation-ocean interaction on the SEF and ERC.

3. Results

Figures 1-3 show the results of the experiments in the three
groups. The evolution of the maximum wind speed of the
typhoon in the experiments qualitatively followed the Japan
Meteorological Agency estimates during the intensifying and
decaying periods of 23 to 27 September 2018. On the other hand,
the lifetime peak intensity is largely different among the
experiments. Particularly, the peak intensity of the storms in most
members of the SSTC-RAD and SSTC-NORAD groups is
stronger than that in the SSTV-RAD group. The weaker intensity
of the storms in SSTV-RAD can be caused by a difference in the
evolution of the SST in the model. Because a mature typhoon has
thick upper-layer clouds over a broad area, cutting-off of the
shortwave radiative heating in the sea surface largely reduced the
SST in the SSTV-RAD group (not shown).

The azimuthally averaged precipitation exhibits the SEF in the
inner core, and dissipation of the primary eyewall (i.e., ERC) in
most members of the experiments on around 25 September 2018
(Figs. 1-3). The intensity and radial width of the secondary
eyewall precipitation in most members of SSTC-RAD are
stronger and narrower than those in SSTC-NORAD, respectively.

It indicates the organization of convective clouds in the
secondary eyewall and moat formation in SSTC-RAD. The
results suggest that the atmosphere-cloud radiation processes can
enhance the formation of the secondary eyewall and moat, which
is in agreement with Tang et al. (2017). Note that our SSTC-
NORAD experiments turned off not only the shortwave radiation
but also the longwave radiation. Thus, the results can include
roles of the longwave radiation on the SEF and ERC.

We discuss the roles of the typhoon-radiation-ocean
interaction on the SEF and ERC. The intensity and radial width
of the secondary eyewall precipitation in the SSTV-RAD group
are weaker and wider than those in the SSTC-RAD group,
respectively (Figs. 1 and 2). In the SSTV-RAD group, the SST
cooling by the shortwave and longwave radiation in the sea
surface can suppress the development of convective clouds in the
outside of the inner eyewall. Because thick upper-layer clouds,
which are originated from the inner-eyewall convection, expand
on broad areas, the SST cooling is mainly caused by the cutting-
off of the shortwave radiation due to the upper-layer clouds in the
outside of the inner eyewall. Tang et al. (2017) [1] indicated that
the shortwave radiative heating near the surface can encourage
the formation of the moat by reduction of surface heat fluxes (i.e.,
weakening of the wind-induced surface heat exchange feedback)
at radii between the primary and secondary eyewalls. In contrast
to their discussion based on the simulation with the fixed SST,
our experiments in SSTV-RAD indicated that the secondary
eyewall precipitation is weakened by the SST cooling associated
with the cutting-off of the shortwave radiative heating in the
outside of the inner eyewall. It suggests that the SST cooling
through the shortwave radiation (i.e., typhoon-radiation-ocean
interaction) can weaken the secondary eyewall precipitation, and
impact the SEF and ERC. In future works, details of the impact
of the typhoon-radiation-ocean interaction on the SEF and ERC

will be examined.
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Table 1: Experimental design of the sensitivity tests.

- Earth Simulator Proposed Research Project -

Name Radiation SST Initial time
SSTV-RAD On 1D-diffusion®
3 - ; 00 UTC 21,06 UTC 21, 12 UTC 21, 18 UTC 21, 00 UTC 22
SSTC-RAD On Linear interpolation®
- - - September 2018
SSTC-NORAD Off Linear interpolation

2 Ocean temperature is explicitly predicted by a vertical diffusion equation with inputting net heat flux in the sea surface.
b An external dataset of daily sea-surface temperature (SST) data is given as the SST in the model with linearly interpolating in time.
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Figure 1: (a)-(e) Radius-time cross-sections of azimuthally averaged precipitation in the experiments of the SSTV-RAD group (color;
mm h-1), and (f) time series of the maximum wind speed of the typhoon near the surface in the experiments (color lines) and JMA best
track (black crosses). Panels (a) to (e) indicate the experiments with different initial time (a: 0000 UTC 21, b: 0600 UTC 21, c: 1200

UTC 21, d: 1800 UTC 21, and e: 0000 UTC 22 September 2018).
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Figure 2: As in Fig. 1, except for the SSTC-RAD group.
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Figure 3: As in Fig. 1, except for the SSTC-NORAD group.
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