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In an explosive volcanic eruption, volcanic ashes released into the atmosphere are widely distributed. It is important for disaster
prevention to understand the process of transporting volcanic ash in the atmosphere and their depositional patterns on the
ground surface. In this project, we aim to understand the volcanic ash transport process by developing a numerical model. We
performed numerical simulations with some relatively simple wind profiles. Simulation results showed that the influence of
the eruption dynamics and the atmospheric wind differs depending on the size of the tracer particles. We determined the points
where the tracer particles change from rising to falling phases. The distributions of these particles can be used as an initial

condition for advection-diffusion calculation on meteorological models.
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1. Introduction

Explosive volcanic eruptions cause a variety of disasters. One
of the most widespread explosive eruption disasters is the
scattering and deposition of volcanic ash. In a continuous
explosive eruption called a Plinian or sub-Plinian eruption, a
mixture of magma fragments (pyroclasts) and volcanic gas is
injected into the atmosphere from the crater. A mixture of ejected
material and entrained air is called eruption cloud. It rises from
several kilometers to several tens of kilometers above the crater.
Pyroclasts rise with the eruption cloud and fall into the
atmosphere when they leave the eruption cloud. They are
eventually deposited on the ground surface.

The distribution of pyroclastic materials in the atmosphere and
the distribution of sediments on the ground surface are strongly
influenced by the intensity of eruptions and the wind speed of the
atmosphere [1]. As the eruption is more intense, the altitude of
eruption cloud becomes higher and the area of horizontally
expanding cloud (umbrella cloud) becomes wider. As a result,
pyroclastis are transported far away and deposited on the wider
area. It is required for disaster prevention to quantitatively
understand the complicated behavior of transportation and
deposition of pyroclastic materials.

The purpose of this project is to understand the multi-
dimensional and multi-phase eruption dynamics and the
mechanisms of volcanic ash transport. For this purpose, we are
developing a three-dimensional fluid dynamics model of
eruption cloud dynamics [2]. In this FY, we tried to reproduce the
distribution of volcanic ash in the atmosphere and the distribution
of sediments on the ground surface under various mass eruption
rates and atmospheric wind conditions.

2. Method

The model of Suzuki and Koyaguchi [3], which incorporates
the tracer particle calculation into the fluid calculation of Suzuki
et al. [2], was used. It is assumed that a pseudo-fluid composed

of volcanic gas and pyroclastic materials is ejected into the
atmosphere from a circular crater on a flat surface. The ejected
material and entrained air were assumed to be fluids with
different gas constants and specific heats. When they are mixed,
the gas constant and specific heat were changed depending on the
mixing ratio. The basic equation represented by the compressible
Euler equation was discretized by the finite difference method.
Tracer particles were released from the crater at the same
velocity as the ejected material every second. The tracer particles
were assumed to be spherical, and their diameters were randomly
given in the range of 2 mm (8¢) to 28 mm (-8 ¢)). Tracer
particles move relative to the fluid with terminal velocity. When
the tracer particle reached the ground surface, the calculation of
the particle was stopped, and it was set as the deposition point.
The initial conditions of the calculation gave the vertical
distribution of density, temperature and pressure in the standard
mid-latitude or tropical atmosphere. It is assumed to be uniform
in the horizontal direction. Atmospheric wind was also given as
an initial condition. We assumed the case of 10 m/s, 20 m/s, and
30 m/s uniformly in the height direction. The mass fractions of
pyroclastic materials and volcanic gas contained in the magma
were 0.96 and 0.04, respectively, and the magma temperature
was set to 1000 K. The ejection pressure was set to atmospheric
pressure 1.013x10° Pa. The ejection rate was 4x10° kg/s.

3. Simulation Results

‘We have reproduced how tracer particles are transported and
deposited by eruption dynamics and atmospheric wind (Fig. 1).
At a wind speed of 20 m / s, the volcanic plume was bent under
the influence of the wind. At an altitude of about 8 km, the
density of the eruption and the atmosphere were balanced, then
the eruption cloud expanded horizontally.

From the simulation results, we also obtained the spatial
distributions of marker particles in the atmosphere (Fig. 1c) and
the depositional pattern of sediments (Fig. 1d). These
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distributions were strongly dependent of the size of particles.
Large particles separated from the lower parts of bending plume.
Such particles were deposited near the crater. On the other hand,
small particles reached to the top of volcanic plume and were
transported by the horizontally moving cloud. After that, they
separated from the cloud and settled on the wide area of the
ground surface. Very fine particles were suspended in the
horizontally moving cloud and they did not separate from the
cloud.

We also estimated the heights where the marker particles start
to descend towards the ground surface. The distribution of the
points where the upward velocity changed from positive to
negative depended on the particle size. The peak height of the
distribution increases as the particle is larger. This distribution
will be used as an initial condition for advection-diffusion
calculation on meteorological models.
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Fig. 1: Simulation results of 3D fluid dynamics model of eruption cloud. Spatial distributions of (a) mass fraction of the ejected

material, (b) density difference from the stratified atmosphere, and (c) marker particles in x—z space. (d) The distribution of deposited

particles on the ground.
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