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In order to evaluate long-term probability of seismic activity off Miyagi Prefecture along the Japan Trench, we conducted
numerical simulations of earthquake generation cycles based on the friction law that represents the process of stress
accumulation and release on the plate interface. Years to decades of quiescent period after a M~9 earthquake, a M>7 earthquake
occurred at the downdip edge of the M~9 source. The M>7 rupture initiated from the downdip part and propagated to the updip.
The following afterslip did not propagate much to the updip side. On the other hand, at the later stage of a M~9 earthquake
cycle, a M>7 afterslip widely propagated to the updip. Recurrence intervals of the M>7 earthquakes tended to be less constant
in the early stage compared to the later stage of the M~9 earthquake cycle. These characteristics were related to the extent of

the locked area on the updip side.

Keywords : earthquake cycle, slip deficit, afterslip distribution, rupture initiation, Miyagi-ken-Oki earthquake

1. Introduction

In the middle segment of the Japan Trench, M~9 and M>7
interplate earthquakes have occurred at the updip and downdip
side on the subducting Pacific Plate, respectively. At the updip
side, the 2011 Tohoku-Oki earthquake (Mj9.0) occurred. The
downdip edge of the coseismic source area of the Tohoku-Oki
earthquake is located off the east coast of Miyagi Prefecture,
where Mj7.1-7.4 earthquakes have occurred with recurrence
intervals of approximately 30-40 years, in 1897, 1936, 1978, and
2005. The source regions of the past Miyagi-ken-Oki
earthquakes ruptured again during the Tohoku-Oki earthquake.
As a result of qualitatively considering the impact of the 2011
Tohoku-Oki earthquake in addition to the long-term evaluation
based on this history, as of January 2022, the probability of an
earthquake around M7.4 off Miyagi Prefecture is 70-80 % within
30 years [1].

Nakata et al. [2] suggested that the time interval between the
M~9 earthquake and the subsequent M>7 Miyagi-ken-Oki
earthquake was equal to or shorter than the average recurrence
interval during the later stage of the M~9 earthquake cycle
because of the high stress rate due to the large afterslip of the M~9
earthquake based on numerical simulations. In order to evaluate
long-term probability of seismic activity in the middle segment,
it is necessary to understand the basic physical process of
preparation for the Miyagi-ken-Oki earthquake throughout M~9
earthquake cycles. Here, we investigated in detail spatial and
temporal characteristics of slips on the plate interface off Miyagi

Prefecture common to multiple cycles of M~9 earthquakes.

2. Method of earthquake generation cycle simulation
Based on our previous studies along the Japan Trench [2, 3],

we conducted numerical simulations of earthquake generation
cycles along the Japan Trench based on stress accumulation and
release processes on the plate interface. Seismic and aseismic
events were modeled to represent the release of slip deficit or
backslip that accumulates during interseismic period [4]. Such
space-time variations in slip velocity are assumed to be an
unstable slip with a frictional interface. We used a rate- and state-
dependent friction law [5] as an approximated mathematical
model for large-scale frictional behavior on the plate interface.
We used a fault constitutive law [6] that determines the slip rate
for a given stress and a value of strength. In addition, we used an
aging law [5, 7], which can be considered as an evolution law for
strength change, which varies depending on the prior slip history.
We used the realistic three-dimensional geometry of the
subducting Pacific Plate [8].

3. Results

We performed calculations using numerical simulations over
an extensive period (approximately 2200 years). At the shallow
part of the middle segment of the Japan Trench, time
development of slip deficit showed three large changes of >50 m
caused by M~9 earthquakes with time intervals of approximately
620 and 667 years.

Time development of slip deficit in the center of the MYG
patch at the downdip part of the middle segment showed many
earthquakes occurred there. The slip deficit rate was not constant
throughout a M~9 earthquake cycle. The slip deficit rate was
large after the M~9 earthquake (the early stage of the M~9
earthquake cycle), but it become low and almost constant as the
next M~9 earthquake approached (at the later stage of the M~9
earthquake cycle). The time development of the slip deficit rate
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at the MYG patch seems to be related to the recurrence interval,
not the slip amount during the MYG earthquakes.

During 2200 years, M=7.28-7.39 earthquakes repeatedly
occurred in the patch with time intervals of approximately 44—
114 years. The fluctuation of magnitude is not so noticeable, but
fluctuation of recurrence interval in the MYG patch was large
during an early stage of the M~9 earthquake cycle. The time
intervals between each M~9 earthquake and the immediately
following M>7 earthquake in the MYG patch were 2650 years,
it was shorter than recurrence intervals between rupture of the
MYG patch only during a M~9 cycle. Furthermore, the next
MYG earthquake had the longest time interval from the previous
one. At the later stage of the M~9 earthquake cycle, the average
recurrence interval of the four M>7 earthquakes in the MYG
patch that occurred before the M~9 earthquake was relatively
constant (approximately 5964 years).

Immediately before and after the M~9 earthquake, the rupture
initiation points and the coseismic/afterslip distributions of the
M>7 MYG earthquake were different. At the later stage ofa M~9
earthquake cycle, that is before the M~9 earthquake, a rupture of
the MYG earthquake initiated from somewhere within the patch,
and propagated over the source area. Then, afterslip widely
propagated to the updip. On the other hand, after a M~9
earthquake, the rupture of the MY G earthquake initiated from the
downdip part of the source of the earthquake. The coseismic slip
distributed slightly narrow at the updip side. Similarly, the
following afterslip did not propagate much to the updip side.

4. Discussions

There are differences between the rupture initiation point and
afterslip distribution immediately before and after the M~9
earthquake in our results. These characteristics in the early and
final stage of M~9 earthquake cycle in this study is consistent to
observational features. For example, in the final stage of the 2011
Tohoku-Oki earthquake cycle, the 2005 rupture propagated from
the hypocenter to the downdip side and finally ruptured the
southeastern part of the source area of the 1978 earthquake [9].
Aseismic slip propagated to the eastern side [10]. After the
Tohoku-Oki earthquake, among Mw3.5-5 interplate earthquakes
occurred from August 2016 to December 2019 along the Japan
Trench, most earthquake ruptures propagated updip [11].

As reported by Nakata et al. [2], in our new results, the time
interval between the M~9 earthquake and the subsequent M>7
MYG earthquake was shorter than the average recurrence
interval during the later stage of the M~9 earthquake cycle. The
time interval and magnitude of earthquakes occurred in the MYG
at the final stage of the M~9 earthquake cycle were not constant
for every cycle. From characteristics that are common to all
cycles in these simulations, it can be said that recurrence interval
and magnitude of MYG earthquake in the latter half of the M9
cycle is rather characteristic. So it is reasonable to rely on the

history of the past several times as in the long-term evaluation.

However, in the early stage of the M9 earthquake cycle, long-
term evaluation based on the past history is not suitable, and the
long-term evaluation should be based on the aseismic slip on the
updip side of the MYG source.
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