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The Multi-Scale Simulator for the Geoenvironment (MSSG) is a multi-scale atmosphere-ocean coupled model that can
be applied to global, regional, and urban scale simulations. This model has been implemented on various platforms and has
been performed for a wide range of applications. In this fiscal year, we conduct building-resolving micrometeorology
simulations using MSSG to obtain reference data for improving the accuracy of the micrometeorology simulation. Sensitivity
experiments to various model parameters and settings in the MSSG micrometeorology model are conducted. The results
confirms that the heat transfer coefficient as well as the initial and boundary temperature have an impact on the air

temperature at a street.
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1. Introduction

The Multi-Scale Simulator for the Geoenvironment (MSSG)
[1, 2, 3] is a multi-scale atmosphere-ocean coupled model that
can be applied to global, regional, and urban scale simulations.
MSSG is capable of running micrometeorology simulations,
which resolve building geometry and tree crown distribution.
MSSG has been applied to analyses of summer heat
environments in actual urban areas to evaluate measures for heat
mitigation. Several measures have been proposed to mitigate the
heat environment, e.g., replacing pavement surfaces, planting
trees, and installing mist sprayers. To consider adaptation
measures to the increased risk of urban heat environments due to
climate change, it is important to clarify effective way of

implementing measures based on micrometeorology simulations.

Thus, the reliability of the simulation is crucial. In this study,
sensitivity experiments to various model parameters and settings
in the MSSG micrometeorology model are conducted to obtain
reference data for improving the accuracy of the
micrometeorology simulation.

2. Micrometeorology simulation using MSSG

The governing equations for the atmospheric component of
MSSG are the transport equations for density, momentum,
pressure, and water substances. At urban scales with a grid size
of O(1 m), MSSG can perform building-resolving large-eddy
simulation (LES) using a subgrid-scale turbulence model. For the
building-resolving LES, the fractional step method is adopted:
The third-order Runge-Kutta method is used for time integration,
and the Helmholtz equation is solved to correct pressure and
velocity. A transport equation of subgrid-scale turbulent kinetic
energy is solved to calculate turbulent viscosity and diffusion.
Building geometry is represented by voxel method, and tree
crowns are represented by a spatial distribution of leaf area

density. The effects of tree crowns on wind resistance, radiation,
and heat and water exchange processes can be considered. A
three-dimensional (3D) radiation model is implemented to
evaluate radiative heat budget on ground and building surfaces
and tree crowns in complex urban geometry [3]. It is capable of
efficiently computing 3D radiative transfer repeatedly during the
time evolution of the LES.

3. Computational conditions

The computational domain was set to 2-km square around
Minato-odori St. in Yokohama. The horizontal grid spacing was
2 m, and the number of horizontal grid points was 1000 x 1000.
The number of vertical grids was set to 200, and the grid points
were equidistantly located with a grid spacing of 2 m. Elevation,
building height, land use, and tree-crown distribution data were
prepared according to the method in Ref. [4]. Figure 1 shows the
land use distribution for the 2-m resolution computational
domain.

Buildings
Building sites
Asphalt
Grassland
Water

Green spaces

Fig. 1 Land-use distribution in the computational domain.
The red frame indicates the location of Minato-odori St.
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The simulation was conducted for 11:00-13:00 JST on August
26, 2021, when field observations were conducted at Minato-
odori St. The weather was generally clear, and the maximum
temperature was 34.8°C in Yokohama. The initial and boundary
values of the atmosphere were obtained by multiscale
downscaling using mesoscale and 5-m micrometeorology
simulations based on the JMA GPV data.

In addition to the base case, following sensitivity experiments
were conducted: (Case 1) the initial and boundary temperature
T, is increased uniformly by +1.0°C; (Case 2) the initial and
boundary water vapor density p,,, is increased uniformly by
+0.01 kg/m?;, (Case 3) the heat transfer coefficient aj Iis
doubled; and (Case 4) the initial surface temperature Ty is
increased by +6.0°C for the land use categories of buildings,
building sites, and asphalt.

4. Results and discussion

Figure 2 shows the change in air temperature at Minato-odori
St. obtained from the sensitivity experiments. The legend labels
represent observation points, which were located on August 26.
The temperature at the same locations as the actual observation
points was averaged over 30 minutes before the indicated time.
In Case 1, the temperature at Minato-odori St. increased by
approximately 1°C, meaning that the initial and boundary values
have a significant influence. In Case 2, the temperature change is
not significant. In Case 3, the temperature increased by about 1°C
at some locations, indicating that the heat transfer coefficient has
a significant effect on the temperature distribution. In Case 4, a
slight increase in air temperature is observed, but the amount of
change is smaller than that in Case 3. These results suggest that
the heat transfer coefficient has a significant impact on air
temperature. This may be attributed to the fact that increasing the
heat transfer coefficient results in a larger increase in the sensible
heat flux at locations with higher surface temperatures. In this
project, we will compare the temperature distribution with
observed data to identify issues for improving the accuracy of
heat environment analysis using micrometeorology simulations.
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Fig. 2 Air temperature change obtained by the sensitivity
experiments for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case
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