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We develop a new technique combining earthquake simulation and machine learning to locate earthquake hypocenters. We
compute numerical seismic waveforms for a realistic three-dimensional Earth model and use these waveforms to create
snapshots of spatial images for seismic wave propagation at the surface of the Earth. These snapshots are sorted by time and
used as a training dataset for a neural network to locate earthquake hypocenters by regression. We apply this network to
the observed seismic waveforms to demonstrate the feasibility of this procedure. Our technique is beneficial because it can
improve the accuracy of hypocenter determination by increasing the number of training datasets as the computed theoretical
seismic waveforms can be numerically increased. We may arbitrarily put earthquakes to create a training dataset at any

location, which will enable us to locate earthquakes at a location where earthquakes have never occurred before.

Keywords: earthquake locating technique, numerical seismic waveforms, machine learning, spectral-element

method

1. Introduction

Locating earthquakes is an essential procedure in seismology
to study seismic activity in earthquake-prone regions. The
conventional technique for locating earthquakes is based on the
linearized least squares procedure using the associated arrival
times of seismic waveforms, such as the first arrival P-wave and
secondary S-wave data [1-2]. This technique uses the one-
dimensional internal structure of the Earth and is difficult to
extend to a three-dimensional structure. We have proposed a new
technique that combines numerically computed theoretical
seismic waveforms and machine learning to locate earthquakes
[3]. Numerical seismic waveforms, i.e. numerical seismograms,
are calculated for a realistic three-dimensional Earth model and
these seismograms are used to create snapshots of spatial images
for seismic wave propagation at the surface of the Earth. We sort
these snapshots by time and use these images as training dataset
for a convolutional neural network to estimate the earthquake
hypocentral parameters, such as the epicenter, depth, origin time,
and magnitude, by regression. By applying this neural network
to the actual observed seismic waveform data, we have shown

that this technique accurately locates the earthquake hypocenter.

2. Earthquake Simulation

We used the program package SPECFEM3D [4-7] to calculate
the theoretical seismograms for the realistic Earth model using
the Spectral-element Method. We use the Earth Simulator 4
(ES4), for the computation of numerical seismograms. The
numerical seismograms were synthesized using 48 x 48, yielding
2,304 slices of the spectral-element mesh. Each slice was

allocated to a single core of the SX-Aurora TSUBASA on ES4,
and then subdivided into 768 x 768 grid points, thereby enabling
the generation of numerical seismograms with an accuracy of 5.6
s and longer [8]. SX-Aurora is the vector processor, and the
SPECFEM3D code is optimized for the vector processor. We
have measured the performance of the optimization using the
FTRACE routine supplied by NEC and found that the peak
performance ratio was 9.4%. To generate a mesh for the
computation, we select the Hakone volcanic region in Japan,
where the data from a seismic observation network can be used.
A 3D seismic wave speed model of the Hakone region
constructed by Yukutake et al [9] was also used. We calculate the
numerical seismograms at the seismographic stations operated
by the Hot Springs Research Institute of Kanagawa Prefecture
using a sampling interval of 0.1 s. Then, 32 x 32 images
occupying the seismic network were generated from the
seismograms computed for the seismic stations.

To create the training dataset, the hypocenter was set in the
Hakone region using a spatial distance of 0.01° to produce the
seismic wave propagation images, and the total number of
earthquakes used for the training dataset was 3,600 (Figure 1).
An example of a wave propagation image with respect to time is
shown in Figure 2. Consequently, approximately 1,080,000
images of seismic-wave propagation at the surface were
generated, with a 32 x 32 and time interval of 0.1 s as the training
dataset. By using ES4, we could compute these images within a

week.

3.3D-CNN
In this study, we used a 3D-CNN as the network architecture.
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A 32 x 32 image was exploited as the input, and hypocentral
parameters including the latitude, longitude, depth, occurrence
time, and magnitude, were estimated by regression. The
architecture of the 3D CNN used in this study is shown in Figure
3, with the 3D CNN reflecting an extension of the 2D CNN [10].
A time series of the event (e.g., 3D structure from x x y X t shown
in Figure 3) is used as an input for learning and estimation. A
duration of 6 s (60 images) was applied, with the estimates
performed 20 times (up to 2 second after the seismic waveform
started) using 60 snapshot images, thus, yielding the hypocentral
parameters 8 s after the arrival of seismic waves.

A 3D CNN model generally requires a longer learning time
compared to a 2D CNN. In this study, we realized that this was
linked to the I/O random access, instead of GPU performance. To
handle this problem, the complete training dataset was loaded
into the memory, thereby shortening the learning time to 120
epochs in 2 hours involving learning time of 5 parameters using
1GPU nodes of ES4.

4. Validation and Testing for 3D-CNN

The 1,080,000 training data images were divided into training
data (80%) and validation data (20%). In partitioning the training
data, the earthquakes involved in the validation were excluded
from the testing
optimized to estimate the hypocentral parameters by minimizing

(Figure 1). The network parameters were

discrepancies in the training dataset. After optimization, the
results were verified using the validation dataset. One network
was used to estimate the five hypocentral parameters. The
hypocentral parameter values obtained after 8 s were considered
as estimates. The root mean square errors (RMSE) associated
with the estimated values were comparable to those from the
validation dataset, and the estimated parameters for all
earthquakes were used for validation.

5. Generalization for Real Data

We generalized the developed neural network for the real
seismographic data, as we did in our previous work [3]. The data
were examined and 173 earthquakes with a magnitude of
approximately 2.0, which occurred in the Hakone region, Japan,
between 2015 and 2019 were selected. The 32 x 32 images were
created in the same manner as the training dataset and employed
as the inputs for the neural network to estimate the parameters.
The RMSE between the estimated parameters and those reported
by the Hot Springs Research Institute of Kanagawa Prefecture
for these earthquakes was estimated. The comparison of the
results showed that the proposed neural network provides good
results in general. The results suggest that hypocentral parameters
can be estimated using images of seismic wave propagation
evolution without considering the arrival times of seismic waves
at observatories. The results also demonstrate that the 3D Earth
structure can be explicitly included in the earthquake hypocenter

determination by using our technique.

- Earth Simulator JAMSTEC Proposed Project -

Here, we extend our work to examine how the accuracy of the
hypocentral parameters may be improved in our technique. We
generate learning dataset in different ways from out previous
work. We include theoretical seismograms computed for
observed earthquakes as training data and found that the
estimation errors decreased even though we do not include
earthquakes used in the verification are not included in the
training dataset. Although we are in the preliminary stage of
analysis for these trials, these modifications in the training dataset
should improve the accuracy of the earthquake location that are
common in the region, while maintaining the accuracy for
earthquake location in general. We show the results of these
examinations and discuss the possibility of broader use of our

method to be applied for the actual seismic observation networks.
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Figure 1. Red dots are the earthquakes used for learning. Crosses
are epicenters of observed earthquakes. Triangles are seismic
observation stations. The total number of earthquakes used is

3600 and we used 2880 events as the training dataset.

Figure 2. Map of an example propagation image used for

learning process. Colors indicate vertical displacement from -

1.4e-6 mto 1.4e-6 m as they change from blue to red respectively.
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Figure 3. Network architecture used for the 3D convolutional

neural network.
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