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Chapter 2  Solid Earth Simulation

1. Introduction
We have focused this year on research and development

of new numerical algorithms and codes that enable us to per-

form large scale computer simulations of mantle convection

and geodynamo by Earth Simulator.

2. Development of New Spherical Grid: Yin-Yang Grid
Since the finite difference method enables us to make

highly optimized programs for massively parallel computers,

we exploit the possibility of the finite difference method for

simulations in spherical shell geometry with radius r (ri ≤ r ≤
ro), colatitude θ (0 ≤ θ ≤ π), and longitude φ (0 ≤ φ< 2π).

Because there is no grid mesh that is orthogonal all over

the spherical surface and, at the same time, free of coordi-

nate singularity or grid convergence, we decompose the

spherical surface into subregions. The decomposition, or dis-

section, enables us to cover each subregion by a grid system

that is individually orthogonal and singularity-free. This

divide-and-rule approach has been used with good success

in the computational aerodynamics that incorporates com-

plex geometry of aircraft's body with wings/stores/blades.

The dissection of the computational domain generates

internal border or boundary  between the subregions. There

are two different approaches to handle the internal bound-

aries. One is the patched grid method10) and the other is the

overset grid method3). In the patched grid approach, the sub-

domains contact one another without any overlap on their

borders. In the overset grid method, on the other hand, the
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subdomains partially overlap one another on their borders.

The overset grid is also called as overlaid grid, or composite

overlapping grid, or Chimera grid13). The validity and impor-

tance of the overset approach in the aerodynamical calcula-

tions was pointed out by Steger12). Since then this method is

widely used in this field. It is now one of the most important

grid techniques in the computational aerodynamics.

We have proposed a new overset grid for spherical geom-

etry that is named "Yin-Yang grid"6) after the symbol for yin

and yang of Chinese philosophy of complementarity. The

Yin-Yang grid is composed of two identical component

grids. Compared with other possible spherical overset grids,

the Yin-Yang grid is simple in its geometry as well as metric

tensors. A remarkable feature of this overset grid is that the

two identical component grids are combined in a comple-

mental way with a special symmetry.

The Yin-Yang grid in its most basic shape is shown in

Fig. 1. It has two component grids that are geometrically

identical (exactly the same shape and size); see Fig. 1(a). We

call the two component grids "Yin grid" (or n-grid) and

"Yang grid" (or e-grid). They are combined to cover a spher-

ical shell with partial overlap on their borders as shown in

Fig. 1(b). Each component grid is in fact a part of the lati-

tude-longitude grid: A component grid, say Yin grid, is

defined in the spherical polar coordinates by its low latitude

region of 90˚ (45˚ N and S) about the equator and 270˚ in the

azimuthal direction. Another component grid, Yang grid, is

defined by the same rule but in different spherical coordi-
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nates that is perpendicular to the original one; the axis of the

Yang grid's coordinates is located in a equator of the Yin

grid's coordinates. The relation between Yin coordinates and

Yang coordinates is denoted in the Cartesian coordinates by

(xe, ye, ze) = (–xn, zn, yn) , (1)

where (xn,yn,zn) are Yin's Cartesian coordinates and (xe,ye,ze)

are Yang's. Note that the above transformation is comple-

mental:

(xn, yn, zn) = (–xe, ze, ye). (2)

Since the two component grids are identical and their geo-

metrical positions are complemental, we can make concise

programs: Suppose a grid point ( , ) on Yin grid's hori-

zontal border at index position (j, k) (e.g., j = 1). Its value

should be determined by an interpolation from its neighbor

φk
nθj

n

points, or stencils, of Yang grid with interpolation coeffi-

cients that are determined by relative position of ( , ) in

the stencils. Note that exactly the same interpolation coeffi-

cients and relative stencils are used to set the value of corre-

sponding grid point ( , ) at (j, k) of Yang's border, since

the geometrical relations between Yin grid and Yang grid

are symmetric. In other words, we can make use of one

interpolation routine for two times (for Yin grid and for

Yang grid) to set the horizontal boundary conditions. Note

also that the metric tensors at a bulk grid point at (j, k) of Yin

grid is a function of its position ( , ) in Yin's coordi-

nates, and the metric tensors at corresponding point ( , )

in Yang grid are exactly the same. Therefore, we can call one

subroutine of fluid solver for two times for Yin grid and

Yang grid.

Another advantage of the Yin-Yang grid resides in the fact

that the component grid is nothing but a (part of ) latitude-lon-

gitude grid. We can directly deal with the equations to be

solved with vector form in the usual spherical polar coordi-

nates; {νr, νθ, νφ}. The analytical form of metric tensors in the

spherical coordinates are familiar. We can directly code the

basic equations in the program as they are formulated in the

spherical coordinates. We can make use of various resources

of mathematical formulas, program libraries, and tools that

have been developed in the spherical polar coordinates.

3. Dynamo Simulation by Yin-Yang Grid
We have developed a geodynamo simulation code using a

finite difference method in the Yin-Yang grid. We have con-

firmed that the magnetic field generation by the magnetohy-

drodynamic dynamo process in the core is successfully

reproduced by the Yin-Yang grid method. Fig. 2 shows the

three-dimensional convection flow.
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Fig. 1  A spherical overset grid named "Yin-Yang grid".

Fig. 2  Core convection simulation by Yin-Yang grid.



107

Chapter 2  Solid Earth Simulation

4. Mantle Convection Simulation by Yin-Yang Grid
We have developed a new numerical simulation code to

solve the thermal convection of a Boussinesq fluid with infi-

nite Prandtl number using Yin-Yang grid16). The non-dimen-

sional equations of mass, momentum and energy are solved

by the finite difference discretization with second-order

accuracy. Using the Yin-Yang grid method, we simultane-

ously solve these equations for each component grid. We use

the collocated grid method; all the primitive variables, veloc-

ity, pressure, and temperature, are defined on the same grid

points. The SIMPLER method9), 5) is applied to solve veloci-

ty and pressure. The Crank-Nicolson method is used in the

energy equation for the time stepping. The upwind differ-

ence method is applied for the advection term in the energy

equation. We use a Successive Over-Relaxation (SOR)

method as the iterative solver required in the SIMPLER

method. The horizontal boundary values of each component

grid are determined by linear interpolation of the another

component grid. The interpolation is taken at each SOR iter-

ation. We performed benchmark tests with published numer-

ical codes and confirmed the validity of our code.

We have focused on the convection at Rayleigh numbers

up to 106 to confirm the applicability of the Yin-Yang grid.

When Rabot = 105, the convection patterns become weakly

time-dependent; the geometrical symmetry in this Rayleigh

number is broken. This disagrees with the result of Ratcliff

et al.11). In the isoviscous case with "cubic symmetry", all

the six upwelling plumes have the same diameters in our

results (Fig. 3). The corresponding case by Ratcliff et al., in

which a finite volume scheme on the latitude-longitude grid

is used, shows a symmetric pattern about equator and

appears to remain in a steady state. These observations sug-

gest that the low Rayleigh number convections around Rabot

= 105 are numerically affected by coordinate singularity and

grid convergence in the latitude-longitude grid method. The

large-scale (low degree) convective structures are numerical-

ly affected by the poles and the grid convergence. On the

other hand, the pole problems are removed in our code by

making use of Yin-Yang grid.

The Yin-Yang grid is suitable to solve the mantle convec-

tion problems in the spherical geometry because it automati-

cally avoids the pole problems that are inevitable in the lati-

tude-longitude grid. Based on this grid, our code is powerful

and unique finite difference based code that can solve both

the uniform and the strongly variable viscosity convections.

5. Development of New Algorithm for the Mantle
Convection
The major difficulty in numerical simulations of the man-

tle convection lies in solving the flow field. Since the mantle

material is highly viscous14) (Ο(1021) Pa s), the flow in the

mantle is described by a steady-state flow balancing between

the buoyancy force, pressure gradient and viscous resistance.

In addition, the viscosity of mantle material varies by several

orders of magnitude depending on temperature, pressure,

and stress15), 8). Because of its extreme rheological proper-

ties, one must solve ill-conditioned simultaneous equations

for velocity and pressure at every timestep. It is very impor-

tant to develop efficient numerical techniques that can deal

with the steady-state flow of highly viscous fluids with a

strongly variable viscosity, in order to conduct large-scale

simulations of mantle convection.

In this study, we developed a numerical algorithm for

solving mantle convection problems with strongly variable

viscosity. Equations for conservation of mass and momentum

for highly viscous and incompressible fluids are solved itera-

tively by a multigrid  method1), 2) in combination with pseu-

do-compressibility4) and local time stepping techniques. The

detail of the algorithm can be found in Kameyama et al.7).

We implemented this algorithm into a mantle convection

simulation program in a three-dimensional rectangular

domain, and performed several calculations for mantle con-

vection with strongly variable viscosity. Figure 4 shows a

snapshot of thermal convection of mantle with a viscosity

variation of 105. Benchmark comparisons with previous two-

Fig. 3  Mantle convection simulation by Yin-Yang grid.

Fig. 4  Simulation of thermal convection of mantle with a strongly vari-

able viscosity in a rectanglar domain.
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and three-dimensional calculations revealed that accurate

results are obtained even for the cases with viscosity varia-

tions of several orders of magnitude. We found that the pres-

ent method successfully solved the cases with the global vis-

cosity variations up to 1010 by adapting the costs of pre- and

post-smoothing calculations during the multigrid operations.

This program is easily vectorized and parallelized, and we

obtained the vector operation ratio of 97.94% and paral-

lelization ratio of 99.53% for the calculations with 720 × 720

× 320 mesh using 15 nodes.

The present method is proved to be suitable for the large-

scale simulation of mantle convection compared to the SIM-

PLER method9) by carrying out three-dimensional simula-

tions using these two methods; (i) the memory size required

for the present method is only a half of that for the SIM-

PLER method; (ii) the computational time linearly increases

with the present method as the number of unknown variables

N increases, whereas it increases in proportion to N4/3 for the

SIMPLER method (when the conjugate gradient method is

used for solving the Poisson equations); and (iii) the cases

with variable viscosity can be solved with much less compu-

tational costs for the present method than for the SIMPLER

method.

6. Summary
We have devised a new grid in spherical shell geometry

based on the overset methodology. The new overset grid,

named Yin-Yang grid, is applied to spherical shell mantle

convection and geodynamo simulations with good success.

We have also developed a new algorithm for mantle convec-

tion simulation by combining pseudo-compressibility and

local time stepping method together with the multigrid

method. This algorithm is implemented to mantle simulation

codes in box geometry. 
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