
Development of General Purpose Numerical Software
Infrastructure for Large Scale Scientific Computing

Project Representative

Akira Nishida 21st Century COE Program, Chuo University

Authors

Akira Nishida 1, 2, Akira Nukada 2, 3, Hisashi Kotakemori 2. 3 and Tamito Kajiyama 2, 3

1 21st Century COE Program, Chuo University

2 Core Research for Evolutional Science and Technology (CREST) Program, Japan Science and Technology Agency

3 Department of Computer Science, the University of Tokyo

139

Chapter 2 Computer Science

The object of the project, which started in 2002 as a study named the Scalable Software Infrastructure (SSI) project of Core

Research for Evolutional Science and Technology at Japan Science and Technology, is to develop basic libraries for large

scale scientific simulations which have previously been developed separately in each field and to integrate them into a scala-

ble software infrastructure. The targets include iterative solvers for linear systems, fast integral transforms, and computing

environment-independent frameworks for scientific computing. The project adopted an object-oriented programming interface

to enable users to build complex libraries and to develop highly parallel algorithms from a scalability viewpoint, as has been

achieved at various supercomputing sites around the world. Our results have been freely available since September 2005

through networks for researchers in various fields, and their feedback has been reflected in the improved functionality and

usability of the software. Since 2006, as a member of the FY2006 Earth Simulator collaboration project, we have begun tun-

ing our software for highly parallel vector computing environments.

Keywords: high performance computing, parallel algorithms, scalability, object-oriented programming, network distribution

1. Overview
Recent progress in science and technology has made

numerical simulation an important approach for studies in

various fields. The object of the Scalable Software

Infrastructure (SSI) project, funded by the Japan Science and

Technology Agency since 2002, is to develop basic libraries

of solutions and algorithms required for large scale scientific

simulations which have been previously developed separate-

ly in each field, and to integrate them into a scalable soft-

ware infrastructure. The components include a scalable itera-

tive solvers library for linear systems having multiple

solvers; preconditioners; matrix storage formats that are

flexibly combinable; a fast Fourier transform library, which

outperforms some vendor-provided FFT libraries; and a lan-

guage- and computing environment-independent matrix

computation framework. We report below our tuning efforts

in each field.

2. Fast Fourier Transform Library
We have developed a high performance two-dimensional

(2-D) Fast Fourier Transform (FFT) for the Earth Simulator.

The FFT is one of the most important computations in many

fields of the simulations. Therefore, its efficient implementa-

tion on computers is always required.

The Earth Simulator is a distributed-memory, massively-

parallel vector computer. In the case of the computation of

the FFT algorithm on distributed-memory systems, the data

transfer between the nodes often occupies a large percentage

of the total execution time. This is very serious problem,

especially for PC clusters with narrow interconnects. The

Earth Simulator has very high speed interconnects, however,

and reduces the ratio occupied by data transfer to less than

half. With it, the time required for the data transfer can be

hidden by overlapping the communication and the computa-

tion. We used a transpose split algorithm [1] to overlap the

communication of the FFT. The data transfer is divided into

multiple stages, and the computation for one stage is over-

lapped with the communication for the next stage. Figure 1

shows the time lines of the algorithm in the case of four

stages. For efficient data transfer, the data to be sent must be

stored in a contiguous address, and for this reason the pack

and unpack operations are required. Those operations are

simple memory copy operations; therefore, they can be exe-

cuted in one step of the computation of the FFT.

A typical implementation of parallel FFT uses

MPI_Alltoall API for data transfer between the nodes. To

140

Annual Report of the Earth Simulator Center April 2006 - March 2007

overlap the communication with the computation, we used

MPI_Put, a one-side transfer API provided by MPI-2. Table 1

shows the data transfer rates for all-to-all communications

with MPI_Alltoall, with MPI_Put, and with MPI_Isend. The

size of the message sent to each node is 1MB. The result

shows that the implementation with MPI_Put is the best solu-

tion for all-to-all communication on the Earth Simulator.

Each node has eight vector processors and a Remote

Control Unit (RCU), which actually executes non-blocking

data transfers between the nodes. Therefore, we could use all

vector processors for the computation during the data trans-

fer. The main memory of each node is shared with the vector

processors. In order to avoid any additional memory copies,

the computation within the node is parallelized using

OpenMP--that is, the hybrid parallel programming model of

OpenMP + MPI is used in our implementation.

The best number of the stages should be selected depend-

ing on the size of input data and the number of nodes. As

shown in Fig. 1, the communication in one stage is not over-

lapped, and therefore the number of stages should be large.

On the other hand, the overhead of the communication

becomes large if the number of stages is large.

Figure 2 shows the performance of 214 × 214 2-D FFT with

1~16 nodes. The overlapping improved the performance by

a maximum of 50%.

Our implementation also includes many additional opti-

mizations such as a loop exchange to enlarge the iteration

counts for efficient vector processing, insertion of padding to

avoid bank conflicts, and the elimination of memory copies,

to mention only a few. As the result, the performance of 16.3

Tflops was achieved in computing 219 × 218 2-D FFT with

512 nodes (49.6% of peak).

3. Iterative Solvers Library Lis
To solve the linear equations for large sparse systems, we

are developing a library called Lis (Library of Iterative

Solvers for linear systems). It is written in C and Fortran 90,

and consists of the serial, the OpenMP, and the

OpenMP+MPI hybrid version. Lis supports the following

features:

• 12 iterative solvers, 8 preconditioners, and their combinations

• 11 matrix storage formats

Fig. 1 The computation of the FFT using overlapped communication. (4 stages)

Table 1 The data transfer rates (GB/s) for all-to-all communications.

16

7.06 7.71 7.80 7.33 6.97 6.17

3.95 3.28 3.07 2.72 2.36 2.20

10.60 11.00 11.19 10.18 11.42 11.43

32 64 128 256 512

MPI_Alltoall

MPI_Isend

MPI_Put

Fig. 2 The performance improvement by the overlapping.

141

Chapter 2 Computer Science

• a common interface for both the serial and the parallel pro-

cessing which enables users to switch seamlessly from the

serial to the parallel computing environments

• quadruple precision operations

For iterative solvers, Lis supports stationary (e.g., SOR)

and nonstationary (e.g., GPBiCG) iterative solvers for real

general matrices (Table 2). As for preconditioners, it

includes the Jacobi; Incomplete LU factorization (ILU); an

algebraic multigrid based on smoothed aggregation (SA-

AMG), the I+S for stationary iterative solvers; the Hybrid,

which combines iterative solvers like SOR; SAINV, which

approximates A–1 based on the A-diagonalization; and the

Crout version of the ILU preconditioner, which gives us

more stable factorization than the ILU (Table 3). It also sup-

ports multiple matrix storage formats like CRS (Table 4).

We can easily combine the solvers, the preconditioners, and

the matrix storage formats.

The iterative solvers based on the Krylov subspace

method are implemented by matrix-vector products, vector

inner products, and axpy type vector-vector operations. To

port them on the Earth Simulator, we supported vectoriza-

tion and the JDS (Jagged Diagonal Storage) matrix storage

format. Since the standard format for Lis is CRS

(Compressed Row Storage), we needed to transform the data

into the JDS format. The vectorization of the CRS-to-JDS

transformation is implemented by the loop interchange

shown in Fig. 3.

Furthermore, to overlap the computation and communica-

tion of the matrix vector product y = Ax, we partitioned A

unstationary CG

BiCG

CGS

BiCGSTAB

BiCGSTAB(1)

GPBiCG

TFQMR

Orthomin(k)

GMRES(k)

Jacobi

Gauss-Seidel

SOR

stationary

Table 2 Iterative Solvers

Table 3 Preconditioners

Fig. 3 Vectorization of CRS-to-JDS matrix storage formats.

Table 4 Matrix Storage Formats

Jacobi

SSOR

ILU(k)

I+S

SA-AMG

Hybrid

SAINV

Crout ILU

Compressed Row Storage

Compressed Column Storage

Modified Compressed Sparse Row

Diagonal

Ellpack-Itpack generalized diagonal

Jagged Diagonal

Block Sparse Row

Block Sparse Column

Variable Block Row

Dense

Coordinate

142

Annual Report of the Earth Simulator Center April 2006 - March 2007

into D-L-U (D is the diagonal part of A, and -L and -U are

the lower and upper triangular parts of A, respectively). We

can overlap 2) and 3) in the following four steps:

1) Communication of the elements of x, required for the

computation of (D-L)x

2) Communication of the elements of x, required for the

computation of Ux

3) Computation of y = (D–L)x

4) Computation of y –= Ux

4. Matrix Computation Framework
The authors have been developing an easy-to-use matrix

computation framework named Simple Interface for Library

Collections (SILC) [2], which allows users to use various

matrix computation libraries independently of particular

libraries, computing environments, and programming lan-

guages. SILC is currently implemented based on a client-

server architecture. Instead of making calls for library func-

tions based directly on a library-specific application pro-

gramming interface (API), user programs for SILC utilize

matrix computation libraries in the following three steps.

First, the user programs deposit data such as matrices and

vectors into a SILC server. Next, the user programs make

requests for computation by means of mathematical expres-

sions in the form of text. These requests are translated into

calls for appropriate library functions, which are carried out

in the SILC server independently of the user programs.

Finally, the user programs fetch the results of the computa-

tion (if necessary) from the server.

With the aim of providing support for the Earth Simulator

in the SILC framework, we pursued the following three

research directions:

• To introduce a system configuration for computing envi-

ronments based on batch processing systems.

• To implement a SILC server with matrix computation

libraries linked statically to the server.

• To seek improvements on high-performance matrix com-

putations in vector machines by means of vectorization

techniques.

The current implementation of SILC is based on a client-

server architecture. Figure 4 (a) and (b) show two configura-

tions of the implemented SILC system. Figure 4 (a) depicts a

SILC system that is composed of a sequential user program

and an MPI-based parallel SILC server running on four MPI

processes, while Fig. 4 (b) shows another configuration in

which both a user program and a SILC server are MPI-based

parallel programs running on four MPI processes. The shad-

ed parts in the figure indicate the components that SILC pro-

vides, which are responsible for data communications

between the user program and the SILC server as well as for

managing computation requests to be made by the user pro-

gram. On the other hand, the client-server architecture is not

applicable in some computing environments (including the

Earth Simulator) mainly because of their being managed by

batch processing systems such as the Network Queuing

System (NQS). Therefore, we introduced a third system con-

figuration, shown in Fig. 4 (c), which is not based on the

client-server model. In this system configuration, an MPI-

based user program is statically linked with SILC's compo-

nents as well as the matrix computation libraries to be used.

The implementation of the third system configuration is in

progress.

We also implemented a SILC server that did not rely on

the functionalities of multithreading and dynamic linking

available in many operating systems. In some restrictive

computing environments (including the Earth Simulator),

user programs must be single-threaded programs, and the

libraries used in the user programs must be statically linked.

On the other hand, SILC servers are originally multithreaded

programs, and libraries are dynamically linked with the

servers in the form of plug-in modules such that users can

specify the libraries they want to utilize at run time.

Therefore, we developed a single-threaded SILC server in

which all libraries were statically linked while the function-

ality of plug-in modules was kept unchanged. The imple-

mented SILC server was tested on NEC SX-6i, a vector

computer without the functionalities of multithreading and

dynamic linking.

Fig. 4 Three system configurations of SILC. Configurations (a) and (b) are based on a client-server

architecture, while Configuration (c) is for restrictive computing environments in which a

client-server architecture is not applicable.

143

Chapter 2 Computer Science

Moreover, in order to provide better support for vector

computers, sparse matrices in the Jagged Diagonal Storage

(JDS) format [3] were newly supported, and the single-

threaded SILC server was vectorized by vectorization direc-

tives inserted into the source code of the server.

We conducted preliminary experiments to examine the

effectiveness of the aforementioned extensions, using the

user program for SILC shown in Fig. 5. The user program

solves a system of linear equations Ax = b with the

Conjugate Gradient (CG) method [3] written in SILC's

mathematical expressions. Matrix A in the user program was

originally stored in the Compressed Row Storage (CRS) for-

mat [3]; the use of this matrix storage format, however,

resulted in poor performance in NEC SX-6i due to the facts

that (i) the most computationally intensive part in the CG

method is a matrix-vector product; and (ii) when the CRS

format is in use, the innermost loop in the matrix-vector

product over an array of non-zero elements tends to be quite

short compared with the dimension of A. Therefore, we

changed matrix storage formats from CRS to JDS so that the

innermost loop in the matrix-vector product was likely to be

as long as the dimension. It is worth noting that no modifica-

tion was required in the code of the CG method with regard

to the change in matrix storage formats since the code writ-

ten in SILC's mathematical expressions was independent of

matrix storage formats.

Figure 6 shows the experimental results with the dimen-

sion of matrix A on the horizontal axis and the execution

time in seconds on the vertical axis, where A is a sparse

matrix resulting from a regular five-point difference approxi-

mation of a two-dimensional Laplacian equation. We com-

pared the following two cases: (A) the performance of the

user program with a SILC server on NEC SX-6i, and (B)

that of the same program with another SILC server on a

compute node (having an Intel Itanium 2 1.3 GHz processor)

of SGI Altix 3700. The user program in the case of (A)

achieved better performance than the same program in the

case of (B), especially when the dimension was large, thanks

to the use of the JDS format for storing A.

References
[1] Calvin, C.: Implementation of parallel FFT algorithm on

distributed memory machines with a minimum overhead

of communication, Parallel Computing, Vol.22,

pp.1255–1279 (1996).

[2] T. Kajiyama, A. Nukada, H. Hasegawa, R. Suda, and A.

Nishida. SILC: A Flexible and Environment Independent

Interface for Matrix Computation Libraries. In

Proceedings of the 6th International Conference on

Parallel Processing and Applied Mathematics (PPAM

2005), Lecture Notes in Computer Science 3911,

pp.928–935, 2006.

[3] R. Barrett et al. Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, SIAM,

1994.

Fig. 5 The Conjugate Gradient (CG) method written in SILC's mathe-

matical expressions.

Fig. 6 Performance results of the Conjugate Gradient (CG) method for

solving a system of linear equations Ax = b using the Jagged

Diagonal Storage (JDS) format to store a coefficient matrix A.

144

Annual Report of the Earth Simulator Center April 2006 - March 2007

21 COE JST CREST

21 COE JST CREST

JST CREST

JST CREST

JST CREST

14

,

17 9

18

