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The Scalable Software Infrastructure Project was initiated as a national project in Japan, for the purpose of constructing a scalable

software infrastructure for scientific computing. The project covered three areas: iterative solvers for linear systems, fast integral

transforms, and their portable implementation.

Modular programming was adopted to enable users to write their codes by combining elementary mathematical operations.

Implemented algorithms were selected from the viewpoint of scalability on massively parallel computing environments. Since the

first release in September 2005, the codes have been used by thousands of research projects around the world.
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1. Overview

Construction of a software Infrastructure for highly parallel
computing environments requires precisely prediction of future
hardware technologies, and design of scalable and portable
software for these technologies.

The Scalable Software Infrastructure (SSI) Project was
initiated in November 2002, as a national project in Japan, for
the purpose of constructing a scalable software infrastructure
[11, [2], [3]. Based on the policies, we have used various types
of parallel computers, and carefully designed our libraries on
them, to maintain portability and usability. The architectures
include shared memory parallel computers, distributed-
memory parallel computers, Linux-based PC clusters, and
vector supercomputers. In 2003, we signed a contract with the
IBM Watson Research Center on the joint study of the library
implementation on massively parallel environments with tens of
thousands of processors. Since 2006, the SSI project has been
selected for a joint research with the Earth Simulator Center to
port our libraries on massively parallel vector supercomputing
environments. The results of the SSI project will be evaluated
on larger supercomputers in the near future.

In the SSI project, we have studied object-oriented
implementation of libraries, autotuning mechanisms, and
scripting languages for the implemented libraries. The results
were applied to a modular iterative solver library Lis and a fast
Fourier transform library FFTSS. The libraries were written
in C, and equipped with Fortran interfaces. We have also
developed SILC, a simple interface for library collections, with

an extension to the scripting language.
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2. Lis: a Library of Iterative Solvers for Linear

Systems

In the fields such as fluid dynamics and structural analysis,
we must solve large-scale systems of linear equations to
compute high resolution numerical solutions of partial
differential equations. The subgroup released Lis, a library of
iterative solvers and preconditioners for linear systems, with
various sparse matrix storage formats. Supported solvers,
preconditioners, and matrix storage formats are listed in Table
1-4. We present an example of the program using Lis in Fig. 1.

There are a variety of portable software packages that are
applicable to the iterative solver of sparse linear systems.
SPARSKIT is a toolkit for sparse matrix computations written
in Fortran. PETSc is a C library for the numerical solution of
partial differential equations and related problems, which is to
be used in application programs written in C, C++, and Fortran.
PETSc includes parallel implementations of iterative solvers
and preconditioners based on MPI. Aztec is another library of
parallel iterative solvers and preconditioners written in C. The
library is fully parallelized using MPI. From the viewpoint of
functionality, our library and all three of the libraries mentioned
above support different sets of matrix storage formats, iterative
solvers, and preconditioners. In addition, our library is
parallelized using OpenMP to take multicore architectures into
consideration. Feedbacks from the users have been applied to
Lis, and Lis has been tested on various platforms from small PC
clusters to massively parallel computers, including NEC's SX,
IBM's Blue Gene, and Cray's XT series. The code of Lis has
attained the vectorization ratio of 99.1% and the parallelization

ratio of 99.99%. We show a comparison of the MPI version
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Table 1 Solvers for linear equations

CG CR
BiCG BiCR
CGS CRS
BiCGSTAB BiCRSTAB
BiCGSTAB(l) GPBICR
GPBiCG . BiCRSafe
1.0.x - Added in 1.1.x
Orthomin(m) FGMRES(m)
GMRES(m) IDR(s)
TFQMR MINRES
Jacobi
Gauss-Seidel
SOR
Table 2 Solvers for eigenproblems
Power Iteration
Inverse Iteration
Approximate Inverse Iteration
Added in 1.2.x Rayleigh Quot.ient Iteration
Lanczos Iteration
Subspace Iteration
Conjugate Gradient
Conjugate Residual
Table 3 Preconditioners
Jacobi Crout ILU
TILU(k) ILUT
SSOR Additive Schwarz
1.0.x Hybrid Added in 1.1.0 |User defined preconditioner
I+S
SA-AMG
SAINV
Table 4 Matrix storage formats
Compressed Row Storage
Compressed Column Storage
Modified Compressed Sparse Row
. Diagonal
Point - -
Ellpack-Itpack generalized diagonal
Jagged Diagonal Storage
Dense
Coordinate
Block Sparse Row
Block Block Sparse Column

Variable Block Row
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LIS_MATRIX A;

LIS_VECTOR b,x;

LIS SOLVER solver;

int iter;

double times,itimes,ptimes;

lis_initialize(&arge, &argv);
lis_matrix_create(LIS_COMM_WORLD,&A);
lis_vector_create(LIS_COMM_WORLD,&b);
lis_vector_create(LIS_ COMM_WORLD,&x);
lis_solver create(&solver);
lis_input(A,b,x,argv[1]);
lis_vector_set_all(1.0,b);
lis_solver_set_optionC(solver);
lis_solve(A,b,x,solver);
lis_solver_get,_iters(solver,&iter);
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lis_solver_get_times(solver,&times, &itimes,&ptimes);
printf("iter = %d time = %e (p=%e i=%e)\n",iter,times, ptimes, itimes);

lis_finalize();

Fig. 1 Example of the C program using Lis.

of Lis and PETSc in Fig. 2, for solving a three-dimensional
Poisson equation (size: one million, number of nonzero entries:
26 million) on an SGI Altix 3700 with 32 processors.

In our project, we have designed and implemented scalable
and robust algorithms of iterative solvers for linear equations
and their preconditioning, derived from physical applications.
In recent years, multilevel algorithms for large-scale linear
equations, such as the algebraic multigrid (AMG), have been
investigated by many researches. In most cases, multigrid
methods show linear scalability, and the number of iteration
counts is O(n) for a problem of size n. The algebraic multigrid
method is based on a principle similar to the geometric
multigrid, which utilizes the spatial information on physical
problems, but this method differs from the geometric multigrid
by considering the coefficient as a vertex-edge incidence
matrix. In addition, by using the information on the elements
and their relations, this method generates coarser level matrices
without higher frequency errors. The complexity of the
algebraic multigrid is equivalent to the geometric multigrid
and can be applied to irregular or anisotropic problems. We
proposed an efficient parallel implementation of the algebraic
multigrid preconditioned conjugate gradient method based on
the smoothed aggregation (SAAMGCG) and found that the
proposed implementation provides the best performance as the
problem size grows [38]. Currently, the algebraic multigrid
is the most effective algorithm for the general-purpose
preconditioning, and its scalability is also remarkable. We have
implemented the algebraic multigrid in Lis, and have tested it in
massively parallel environments. We present the weak scaling
results for a two dimensional Poisson equation of dimension 49

million on 1,024 nodes of a Blue Gene system in Fig. 3.
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Fig. 2 Comparison of the MPI version of Lis and PETSc.
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Fig. 3 Comparison of AMGCG and ILUCG.

The convergence of the Krylov subspace methods are much
influenced by the rounding errors. Higher precision operations
are effective for the improvement of convergence, although the
arithmetic operations are costly. We implemented the quadruple
precision operations on Lis, and accelerated them by using
architecture specific SIMD instructions, such as Intel's SSE2
and IBM's FNA. To improve their performance, we also applied
techniques such as loop unrolling. The computation time of
our implementation is only 3.5 times as much as Lis' double

precision, and 0.2 times as much as Intel Fortan's REAL*16.
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Furthermore, we proposed the DQ-SWITCH algorithm, which
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performance optimization of iterative solvers by benchmarking 350000 m CRS
the FLOPS performance of matrix vector product kernels on 300, 000 - m CCS
given computing environments. Figure 4 shows the performance (D,_) 250,000 In o MSR
. Lo . . O 200,000 -
of a kernel spmvtestl, derived from a discretized 1-dimensional hr DIA
) . . . T 150,000 - =
Poisson equation, for size up to 1,280,000 on a single node of S 100,000 4 mEL
SX-9 at JAMSTEC, and Fig. 5-7 show the performance for 50,000 + m JDS
. 0 T T T —
size up to 40,960,000 on the three scalar clusters at Kyushu
. A 128 256 512 1024 2048 CRS m BSR
University.
. = BSC
Although the scalar clusters show performance degradation #cores
after they reach their peak performance with the data size of m COO
Fig. 6 Performance of spmvtest] on the Fujitsu PRIMEQUEST Cluster

500kB to 1MB per core, SX-9 shows gradual performance oo
] o ) at Kyushu University.
increase until it reaches about 8-9GFLOPS per core (with the

diagonal (DIA) format in this case), and keep it as the data size m CRS
1,200,000 -
grows. / m CCS
1,000,000 ~
D 500,000 - / —=\ B VSR
D_ )
References 9 600,000 P // / e\ m DIA
. . " . . . . IL ’

[1] A Nishida, "SSI: Overview o-f 51.rr.1u1at10-n S(.)ftwa.re < 400, 000 /// mELL
infrastructure for large scale scientific applications (in 200,000 = JDS
Japanese)," IPSJ, Tech. Rep. 2004-HPC-098, 2004. 0 ‘ el m BSR

[2] A. Nishida, "Experience in Developing an Open Source 512 1024 CRS BSR = BSC
Scalable Software Infrastructure in Japan," Lecture Notes #cores = COO

in Computer Science, vol. 6017, pp. 87-98, 2010.

[3] A. Nishida, R. Suda, H. Hasegawa, K. Nakajima, D.
Takahashi, H. Kotakemori, T. Kajiyama, A. Nukada, A.
Fujii, Y. Hourai, S. L. Zhang, K. Abe, S. Itoh, and T.
Sogabe, the Scalable Software Infrastructure for Scientific
Computing Project, CREST, JST, 2009, http://www.ssisc.
org/.

Fi

g. 7 Performance of spmvtestl on the Hitachi SR16000 Cluster at
Kyushu University.
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