Chapter 2 Epoch-Making Simulation

Development of General Purpose Numerical Software
Infrastructure for Large Scale Scientific Computing

Project Representative

Akira Nishida

Author
Akira Nishida

Research Institute for Information Technology, Kyushu University

Research Institute for Information Technology, Kyushu University

The Scalable Software Infrastructure Project was initiated as a national project in Japan, for the purpose of constructing a scalable

software infrastructure for scientific computing. The project covered three areas: iterative solvers for linear systems, fast integral

transforms, and their portable implementation.

Modular programming was adopted to enable users to write their codes by combining elementary mathematical operations.

Implemented algorithms were selected from the viewpoint of scalability on massively parallel computing environments. Since the

first release in September 2005, the codes have been used by thousands of research projects around the world.

Keywords: high performance computing, parallel algorithms, modular programming

1. Overview

Construction of a software Infrastructure for highly parallel
computing environments requires precisely prediction of future
hardware technologies, and design of scalable and portable
software for these technologies.

The Scalable Software Infrastructure (SSI) Project was
initiated in November 2002, as a national project in Japan, for
the purpose of constructing a scalable software infrastructure
[11, [2], [3]. Based on the policies, we have used various types
of parallel computers, and carefully designed our libraries on
them, to maintain portability and usability. The architectures
include shared memory parallel computers, distributed-
memory parallel computers, Linux-based PC clusters, and
vector supercomputers. In 2003, we signed a contract with the
IBM Watson Research Center on the joint study of the library
implementation on massively parallel environments with tens of
thousands of processors. Since 2006, the SSI project has been
selected for a joint research with the Earth Simulator Center to
port our libraries on massively parallel vector supercomputing
environments. The results of the SSI project will be evaluated
on larger supercomputers in the near future.

In the SSI project, we have studied object-oriented
implementation of libraries, autotuning mechanisms, and
scripting languages for the implemented libraries. The results
were applied to a modular iterative solver library Lis and a fast
Fourier transform library FFTSS. The libraries were written
in C, and equipped with Fortran interfaces. We have also
developed SILC, a simple interface for library collections, with

an extension to the scripting language.

113

2. Lis: a Library of Iterative Solvers for Linear

Systems

In the fields such as fluid dynamics and structural analysis,
we must solve large-scale systems of linear equations to
compute high resolution numerical solutions of partial
differential equations. The subgroup released Lis, a library of
iterative solvers and preconditioners for linear systems, with
various sparse matrix storage formats. Supported solvers,
preconditioners, and matrix storage formats are listed in Table
1-4. We present an example of the program using Lis in Fig. 1.

There are a variety of portable software packages that are
applicable to the iterative solver of sparse linear systems.
SPARSKIT is a toolkit for sparse matrix computations written
in Fortran. PETSc is a C library for the numerical solution of
partial differential equations and related problems, which is to
be used in application programs written in C, C++, and Fortran.
PETSc includes parallel implementations of iterative solvers
and preconditioners based on MPI. Aztec is another library of
parallel iterative solvers and preconditioners written in C. The
library is fully parallelized using MPI. From the viewpoint of
functionality, our library and all three of the libraries mentioned
above support different sets of matrix storage formats, iterative
solvers, and preconditioners. In addition, our library is
parallelized using OpenMP to take multicore architectures into
consideration. Feedbacks from the users have been applied to
Lis, and Lis has been tested on various platforms from small PC
clusters to massively parallel computers, including NEC's SX,
IBM's Blue Gene, and Cray's XT series. The code of Lis has
attained the vectorization ratio of 99.1% and the parallelization

ratio of 99.99%. We show a comparison of the MPI version

Annual Report of the Earth Simulator Center April 2009 - March 2010

Table 1 Solvers for linear equations

CG CR
BiCG BiCR
CGS CRS
BiCGSTAB BiCRSTAB
BiCGSTAB(l) GPBICR
GPBiCG . BiCRSafe
1.0.x - Added in 1.1.x
Orthomin(m) FGMRES(m)
GMRES(m) IDR(s)
TFQMR MINRES
Jacobi
Gauss-Seidel
SOR
Table 2 Solvers for eigenproblems
Power Iteration
Inverse Iteration
Approximate Inverse Iteration
Added in 1.2.x Rayleigh Quot.ient Iteration
Lanczos Iteration
Subspace Iteration
Conjugate Gradient
Conjugate Residual
Table 3 Preconditioners
Jacobi Crout ILU
TILU(k) ILUT
SSOR Additive Schwarz
1.0.x Hybrid Added in 1.1.0 |User defined preconditioner
I+S
SA-AMG
SAINV
Table 4 Matrix storage formats
Compressed Row Storage
Compressed Column Storage
Modified Compressed Sparse Row
. Diagonal
Point - -
Ellpack-Itpack generalized diagonal
Jagged Diagonal Storage
Dense
Coordinate
Block Sparse Row
Block Block Sparse Column

Variable Block Row

114

LIS_MATRIX A;

LIS_VECTOR b,x;

LIS SOLVER solver;

int iter;

double times,itimes,ptimes;

lis_initialize(&arge, &argv);
lis_matrix_create(LIS_COMM_WORLD,&A);
lis_vector_create(LIS_COMM_WORLD,&b);
lis_vector_create(LIS_ COMM_WORLD,&x);
lis_solver create(&solver);
lis_input(A,b,x,argv[1]);
lis_vector_set_all(1.0,b);
lis_solver_set_optionC(solver);
lis_solve(A,b,x,solver);
lis_solver_get,_iters(solver,&iter);

Chapter 2 Epoch-Making Simulation

lis_solver_get_times(solver,×, &itimes,&ptimes);
printf("iter = %d time = %e (p=%e i=%e)\n",iter,times, ptimes, itimes);

lis_finalize();

Fig. 1 Example of the C program using Lis.

of Lis and PETSc in Fig. 2, for solving a three-dimensional
Poisson equation (size: one million, number of nonzero entries:
26 million) on an SGI Altix 3700 with 32 processors.

In our project, we have designed and implemented scalable
and robust algorithms of iterative solvers for linear equations
and their preconditioning, derived from physical applications.
In recent years, multilevel algorithms for large-scale linear
equations, such as the algebraic multigrid (AMG), have been
investigated by many researches. In most cases, multigrid
methods show linear scalability, and the number of iteration
counts is O(n) for a problem of size n. The algebraic multigrid
method is based on a principle similar to the geometric
multigrid, which utilizes the spatial information on physical
problems, but this method differs from the geometric multigrid
by considering the coefficient as a vertex-edge incidence
matrix. In addition, by using the information on the elements
and their relations, this method generates coarser level matrices
without higher frequency errors. The complexity of the
algebraic multigrid is equivalent to the geometric multigrid
and can be applied to irregular or anisotropic problems. We
proposed an efficient parallel implementation of the algebraic
multigrid preconditioned conjugate gradient method based on
the smoothed aggregation (SAAMGCG) and found that the
proposed implementation provides the best performance as the
problem size grows [38]. Currently, the algebraic multigrid
is the most effective algorithm for the general-purpose
preconditioning, and its scalability is also remarkable. We have
implemented the algebraic multigrid in Lis, and have tested it in
massively parallel environments. We present the weak scaling
results for a two dimensional Poisson equation of dimension 49

million on 1,024 nodes of a Blue Gene system in Fig. 3.

115

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

performance (Mflops)

#PE

Fig. 2 Comparison of the MPI version of Lis and PETSc.

‘—Q—AMGCG —a—ILUCG

40

30 Vs

20 /

10 e/
5 . .

2000 4000

Time (sec.)

6000
Problem Size (x10%)

Fig. 3 Comparison of AMGCG and ILUCG.

The convergence of the Krylov subspace methods are much
influenced by the rounding errors. Higher precision operations
are effective for the improvement of convergence, although the
arithmetic operations are costly. We implemented the quadruple
precision operations on Lis, and accelerated them by using
architecture specific SIMD instructions, such as Intel's SSE2
and IBM's FNA. To improve their performance, we also applied
techniques such as loop unrolling. The computation time of
our implementation is only 3.5 times as much as Lis' double

precision, and 0.2 times as much as Intel Fortan's REAL*16.

Annual Report of the Earth Simulator Center April 2009 - March 2010

Furthermore, we proposed the DQ-SWITCH algorithm, which

m CRS
efficiently switches the double precision iterations to the 70,000 ces
L]
quadruple precision to reduce the computation time. The idea 60,000 MSR
of the SIMD accelerated double-double precision operations g_) 50,000 B MS
. . , . O 40,000 m DIA
has also been incorporated into Japan's next generation e
. i 30,000 m ELL
supercomputer project by RIKEN. = 20000
In the fields such as solid-state physics and quantum 10:000 — @ JDS
chemistry, efficient algorithms for eigenproblems for large- 0 BSR m BSR
scale simulations derived from first principle calculation. There 1 2 4 8 CRS = BSC
are several methods to compute eigenvalues of large-scale #cores m COO

sparse matrices. Based on the observations, we proposed that Fi

—

g.4 Performance of spmvtestl on a single node of the Earth

the scalability of the conjugate gradient method can improve Simulator 2.
the performance of eigensolvers in parallel environments, m CRS
where the extreme eigenvalues of a generalized eigenproblem 600, 000 ~ A m CCS
can be solved by reducing these problems to the calculation of o 500,000 7 5 MSR
the local minimum of the Rayleigh quotient, combined with % 400.000 7 = DA
. 300, 000 -
appropriate preconditioners, such as the algebraic multigrid. ™)&
) _ . . S 200,000 - mELL
We have focused on the implementation of the existing major %
. . . . 100,000 4==— = JDS
eigensolvers for sparse matrices on Lis, which was released as 0
version 1.2. < o g CRS m BSR
59 o =
The performance of iterative solvers is affected by the #cores = BSC
data structure of given matrices, the methodology of their m COO
parallelization, and the hierarchy of computer architectures. Fig. 5 Performance of spmvtestl on the Fujitsu PRIMEGY Cluster at

In the fiscal year 2009, we have studied the validity of the Kyushu University.

performance optimization of iterative solvers by benchmarking 350000 m CRS
the FLOPS performance of matrix vector product kernels on 300, 000 - m CCS
given computing environments. Figure 4 shows the performance (D,_) 250,000 In o MSR
. Lo . . O 200,000 -
of a kernel spmvtestl, derived from a discretized 1-dimensional hr DIA
) . . . T 150,000 - =
Poisson equation, for size up to 1,280,000 on a single node of S 100,000 4 mEL
SX-9 at JAMSTEC, and Fig. 5-7 show the performance for 50,000 + m JDS
. 0 T T T —
size up to 40,960,000 on the three scalar clusters at Kyushu
. A 128 256 512 1024 2048 CRS m BSR
University.
. = BSC
Although the scalar clusters show performance degradation #cores
after they reach their peak performance with the data size of m COO
Fig. 6 Performance of spmvtest] on the Fujitsu PRIMEQUEST Cluster

500kB to 1MB per core, SX-9 shows gradual performance oo
] o) at Kyushu University.
increase until it reaches about 8-9GFLOPS per core (with the

diagonal (DIA) format in this case), and keep it as the data size m CRS
1,200,000 -
grows. / m CCS
1,000,000 ~
D 500,000 - / —=\ B VSR
D_)
References 9 600,000 P // / e\ m DIA
. . " IL ’

[1] A Nishida, "SSI: Overview o-f 51.rr.1u1at10-n S(.)ftwa.re < 400, 000 /// mELL
infrastructure for large scale scientific applications (in 200,000 = JDS
Japanese)," IPSJ, Tech. Rep. 2004-HPC-098, 2004. 0 ‘ el m BSR

[2] A. Nishida, "Experience in Developing an Open Source 512 1024 CRS BSR = BSC
Scalable Software Infrastructure in Japan," Lecture Notes #cores = COO

in Computer Science, vol. 6017, pp. 87-98, 2010.

[3] A. Nishida, R. Suda, H. Hasegawa, K. Nakajima, D.
Takahashi, H. Kotakemori, T. Kajiyama, A. Nukada, A.
Fujii, Y. Hourai, S. L. Zhang, K. Abe, S. Itoh, and T.
Sogabe, the Scalable Software Infrastructure for Scientific
Computing Project, CREST, JST, 2009, http://www.ssisc.
org/.

Fi

g. 7 Performance of spmvtestl on the Hitachi SR16000 Cluster at
Kyushu University.

116

Chapter 2 Epoch-Making Simulation

KHBRHERH R EAE Y 7 b = 7 OB

AR AN (i

Vi H # TR TG WIE R e FE £ > & —
HH

P S TR TGS 7EP e >~ & —

A7V xr Tk ERENZNOFEFIZEBCTHMIZHED SNTE2EH 7V T ZARLFERITHT A2HEE D
EIS, KHBAL DS PR SN 5B ORI HEBEEISHS LAy =5 TV ey 7 by o T BT 22 2 HYE LT,
BAGfRD: F B EER, ROZF ORI R G ERE EAOEETEL IS, K 14 4FBE X) BRSBTS ARG g 19
RAIEMIZEMEREO B E LT, SHARRIHERESZHE LB EIToTvwb, EVa—UbEN7f v ¥ T2 — A
FRML. BMEEZHOF A TV ERBEHIHETELLINICTH LB, Ar—5 ¥ 5 1 OSEHD 5L
W L7727V T) AL &S FEL, B GEREBETOMHICHZ 274770 2FHLTWb, KIFEOERIEA
P =2 % UETCIEL —RICHE AT L. 74— KNy 22 LI2X0PUHBEOREVWY 7 vy 27 LT # &Ko T
B, PRITEIHLIY V=20 - FEEMEAMTLIE L DIC, 2—FOELEZRMLAEHZ2HET 2> TWb, F
S AEFEANHIE, WERY I 2L —F ks —HFETa Vs bO—BE LT, B ENY FVEIEEBREAOREL
FEBL, TORREEZIATIVELTABLTWA,

FARSREIZ BT, BATHINY PIVEDSEHRIRE O RE2 505 2 2% <, Mot i d EEL2AEDO O
EDOTHB. LDLENS, BATHINRZ P VEOMREIL, fTHIORIR. EFMLTHE. 2T OREMESFICL > TKRE
CHEREDZEALT 5720, TRCOGEICHRELMEEZ LBTOEELV, 2T REEIIHA 27— & e - i3
FUE T BT B BTN 27 D VR OMERE 2 BRI 2 720Dy F~v—2 7075 L% Lis LIZFEZE - KB L.
ZOHMEEEROGIHHREZ WG L7z ARV F =2 3RAIMNE LD TH HH, T L - TREORHEME
HEx B HFEEIEMIC AR D 5 2 LA HEIC R > 72,

F—T— 8 WUERERSE W T VT X4 Y 2 —viL

117

