
113

	 Chapter 2	 Epoch-Making Simulation

Development of General Purpose Numerical Software
Infrastructure for Large Scale Scientific Computing

Project Representative

Akira Nishida	 Research Institute for Information Technology, Kyushu University

Author

Akira Nishida	 Research Institute for Information Technology, Kyushu University

The Scalable Software Infrastructure Project was initiated as a national project in Japan, for the purpose of constructing a scalable
software infrastructure for scientific computing. The project covered three areas: iterative solvers for linear systems, fast integral
transforms, and their portable implementation.

Modular programming was adopted to enable users to write their codes by combining elementary mathematical operations.
Implemented algorithms were selected from the viewpoint of scalability on massively parallel computing environments. Since the
first release in September 2005, the codes have been used by thousands of research projects around the world.

Keywords:	 high performance computing, parallel algorithms, modular programming

1.	 Overview
Construction of a software Infrastructure for highly parallel

computing environments requires precisely prediction of future
hardware technologies, and design of scalable and portable
software for these technologies.

The Scalable Software Infrastructure (SSI) Project was
initiated in November 2002, as a national project in Japan, for
the purpose of constructing a scalable software infrastructure
[1], [2], [3]. Based on the policies, we have used various types
of parallel computers, and carefully designed our libraries on
them, to maintain portability and usability. The architectures
include shared memory parallel computers, distributed-
memory parallel computers, Linux-based PC clusters, and
vector supercomputers. In 2003, we signed a contract with the
IBM Watson Research Center on the joint study of the library
implementation on massively parallel environments with tens of
thousands of processors. Since 2006, the SSI project has been
selected for a joint research with the Earth Simulator Center to
port our libraries on massively parallel vector supercomputing
environments. The results of the SSI project will be evaluated
on larger supercomputers in the near future.

In the SSI project, we have studied object-oriented
implementation of libraries, autotuning mechanisms, and
scripting languages for the implemented libraries. The results
were applied to a modular iterative solver library Lis and a fast
Fourier transform library FFTSS. The libraries were written
in C, and equipped with Fortran interfaces. We have also
developed SILC, a simple interface for library collections, with
an extension to the scripting language.

2.	 Lis: a Library of Iterative Solvers for Linear
Systems
In the fields such as fluid dynamics and structural analysis,

we must solve large-scale systems of linear equations to
compute high resolution numerical solutions of partial
differential equations. The subgroup released Lis, a library of
iterative solvers and preconditioners for linear systems, with
various sparse matrix storage formats. Supported solvers,
preconditioners, and matrix storage formats are listed in Table
1-4. We present an example of the program using Lis in Fig. 1.

There are a variety of portable software packages that are
applicable to the iterative solver of sparse linear systems.
SPARSKIT is a toolkit for sparse matrix computations written
in Fortran. PETSc is a C library for the numerical solution of
partial differential equations and related problems, which is to
be used in application programs written in C, C++, and Fortran.
PETSc includes parallel implementations of iterative solvers
and preconditioners based on MPI. Aztec is another library of
parallel iterative solvers and preconditioners written in C. The
library is fully parallelized using MPI. From the viewpoint of
functionality, our library and all three of the libraries mentioned
above support different sets of matrix storage formats, iterative
solvers, and preconditioners. In addition, our library is
parallelized using OpenMP to take multicore architectures into
consideration. Feedbacks from the users have been applied to
Lis, and Lis has been tested on various platforms from small PC
clusters to massively parallel computers, including NEC's SX,
IBM's Blue Gene, and Cray's XT series. The code of Lis has
attained the vectorization ratio of 99.1% and the parallelization
ratio of 99.99%. We show a comparison of the MPI version

114

Annual Report of the Earth Simulator Center April 2009 - March 2010 	 Chapter 2	 Epoch-Making Simulation

Table 1 Solvers for linear equations

1.0.x

CG

Added in 1.1.x

CR
BiCG BiCR
CGS CRS
BiCGSTAB BiCRSTAB
BiCGSTAB(l) GPBiCR
GPBiCG BiCRSafe
Orthomin(m) FGMRES(m)
GMRES(m) IDR(s)
TFQMR MINRES
Jacobi
Gauss-Seidel
SOR

Table 2 Solvers for eigenproblems

Added in 1.2.x

Power Iteration
Inverse Iteration
Approximate Inverse Iteration
Rayleigh Quotient Iteration
Lanczos Iteration
Subspace Iteration
Conjugate Gradient
Conjugate Residual

Table 3 Preconditioners

1.0.x

Jacobi

Added in 1.1.0

Crout ILU
ILU(k) ILUT
SSOR Additive Schwarz
Hybrid User defined preconditioner
I+S
SA-AMG
SAINV

Table 4 Matrix storage formats

Point

Compressed Row Storage
Compressed Column Storage
Modified Compressed Sparse Row
Diagonal
Ellpack-Itpack generalized diagonal
Jagged Diagonal Storage
Dense
Coordinate

Block
Block Sparse Row
Block Sparse Column
Variable Block Row

Annual Report of the Earth Simulator Center April 2009 - March 2010

115

	 Chapter 2	 Epoch-Making Simulation

Fig. 3	 Comparison of AMGCG and ILUCG.

Fig. 2	 Comparison of the MPI version of Lis and PETSc.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
p
e
rf

o
rm

an
c
e
 （

M
fl
o
p
s）

1 2 4 8 16 32

#PE

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
p
e
rf

o
rm

an
c
e
 （

M
fl
o
p
s）

1 2 4 8 16 32

#PE

Lis

PETSc

The convergence of the Krylov subspace methods are much
influenced by the rounding errors. Higher precision operations
are effective for the improvement of convergence, although the
arithmetic operations are costly. We implemented the quadruple
precision operations on Lis, and accelerated them by using
architecture specific SIMD instructions, such as Intel's SSE2
and IBM's FNA. To improve their performance, we also applied
techniques such as loop unrolling. The computation time of
our implementation is only 3.5 times as much as Lis' double
precision, and 0.2 times as much as Intel Fortan's REAL*16.

of Lis and PETSc in Fig. 2, for solving a three-dimensional
Poisson equation (size: one million, number of nonzero entries:
26 million) on an SGI Altix 3700 with 32 processors.

In our project, we have designed and implemented scalable
and robust algorithms of iterative solvers for linear equations
and their preconditioning, derived from physical applications.
In recent years, multilevel algorithms for large-scale linear
equations, such as the algebraic multigrid (AMG), have been
investigated by many researches. In most cases, multigrid
methods show linear scalability, and the number of iteration
counts is O(n) for a problem of size n. The algebraic multigrid
method is based on a principle similar to the geometric
multigrid, which utilizes the spatial information on physical
problems, but this method differs from the geometric multigrid
by considering the coefficient as a vertex-edge incidence
matrix. In addition, by using the information on the elements
and their relations, this method generates coarser level matrices
without higher frequency errors. The complexity of the
algebraic multigrid is equivalent to the geometric multigrid
and can be applied to irregular or anisotropic problems. We
proposed an efficient parallel implementation of the algebraic
multigrid preconditioned conjugate gradient method based on
the smoothed aggregation (SAAMGCG) and found that the
proposed implementation provides the best performance as the
problem size grows [38]. Currently, the algebraic multigrid
is the most effective algorithm for the general-purpose
preconditioning, and its scalability is also remarkable. We have
implemented the algebraic multigrid in Lis, and have tested it in
massively parallel environments. We present the weak scaling
results for a two dimensional Poisson equation of dimension 49
million on 1,024 nodes of a Blue Gene system in Fig. 3.

Fig. 1	 Example of the C program using Lis.

LIS_MATRIX A;
LIS_VECTOR b,x;
LIS_SOLVER solver;
int iter;
double times,itimes,ptimes;

lis_initialize(&argc, &argv);
lis_matrix_create(LIS_COMM_WORLD,&A);
lis_vector_create(LIS_COMM_WORLD,&b);
lis_vector_create(LIS_COMM_WORLD,&x);
lis_solver_create(&solver);
lis_input(A,b,x,argv[1]);
lis_vector_set_all(1.0,b);
lis_solver_set_optionC(solver);
lis_solve(A,b,x,solver);
lis_solver_get_iters(solver,&iter);
lis_solver_get_times(solver,×, &itimes,&ptimes);
printf("iter = %d time = %e (p=%e i=%e)\n",iter,times, ptimes, itimes);
lis_finalize();

116

Annual Report of the Earth Simulator Center April 2009 - March 2010 	 Chapter 2	 Epoch-Making Simulation

Furthermore, we proposed the DQ-SWITCH algorithm, which
efficiently switches the double precision iterations to the
quadruple precision to reduce the computation time. The idea
of the SIMD accelerated double-double precision operations
has also been incorporated into Japan's next generation
supercomputer project by RIKEN.

In the fields such as solid-state physics and quantum
chemistry, efficient algorithms for eigenproblems for large-
scale simulations derived from first principle calculation. There
are several methods to compute eigenvalues of large-scale
sparse matrices. Based on the observations, we proposed that
the scalability of the conjugate gradient method can improve
the performance of eigensolvers in parallel environments,
where the extreme eigenvalues of a generalized eigenproblem
can be solved by reducing these problems to the calculation of
the local minimum of the Rayleigh quotient, combined with
appropriate preconditioners, such as the algebraic multigrid.
We have focused on the implementation of the existing major
eigensolvers for sparse matrices on Lis, which was released as
version 1.2.

The performance of iterative solvers is affected by the
data structure of given matrices, the methodology of their
parallelization, and the hierarchy of computer architectures.
In the fiscal year 2009, we have studied the validity of the
performance optimization of iterative solvers by benchmarking
the FLOPS performance of matrix vector product kernels on
given computing environments. Figure 4 shows the performance
of a kernel spmvtest1, derived from a discretized 1-dimensional
Poisson equation, for size up to 1,280,000 on a single node of
SX-9 at JAMSTEC, and Fig. 5-7 show the performance for
size up to 40,960,000 on the three scalar clusters at Kyushu
University.

Although the scalar clusters show performance degradation
after they reach their peak performance with the data size of
500kB to 1MB per core, SX-9 shows gradual performance
increase until it reaches about 8-9GFLOPS per core (with the
diagonal (DIA) format in this case), and keep it as the data size
grows.

References
[1]	 A. Nishida, "SSI: Overview of simulation software

infrastructure for large scale scientific applications (in
Japanese)," IPSJ, Tech. Rep. 2004-HPC-098, 2004.

[2]	 A. Nishida, "Experience in Developing an Open Source
Scalable Software Infrastructure in Japan," Lecture Notes
in Computer Science, vol. 6017, pp. 87-98, 2010.

[3]	 A. Nishida, R. Suda, H. Hasegawa, K. Nakajima, D.
Takahashi, H. Kotakemori, T. Kajiyama, A. Nukada, A.
Fujii, Y. Hourai, S. L. Zhang, K. Abe, S. Itoh, and T.
Sogabe, the Scalable Software Infrastructure for Scientific
Computing Project, CREST, JST, 2009, http://www.ssisc.
org/.

Fig. 4	 Performance of spmvtest1 on a single node of the Earth
Simulator 2.

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000

M
FL

O
P

S

1 2 4 8 CRS
BSR

#cores

CRS

CCS

MSR

DIA

ELL

JDS

BSR

BSC

COO

Fig. 5	 Performance of spmvtest1 on the Fujitsu PRIMEGY Cluster at
Kyushu University.

0

100,000

200,000

300,000

400,000

500,000

600,000

M
FL

O
P

S

2
5
6

5
1
2

1
0
2
4

CRS
#cores

CRS

CCS

MSR

DIA

ELL

JDS

BSR

BSC

COO

Fig. 6	 Performance of spmvtest1 on the Fujitsu PRIMEQUEST Cluster
at Kyushu University.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

M
FL

O
P

S

128 256 512 1024 2048 CRS

#cores

CRS

CCS

MSR

DIA

ELL

JDS

BSR

BSC

COO

Fig. 7	 Performance of spmvtest1 on the Hitachi SR16000 Cluster at
Kyushu University.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

M
FL

O
P

S

512 1024 CRS
BSR

#cores

CRS

CCS

MSR

DIA

ELL

JDS

BSR

BSC

COO

Annual Report of the Earth Simulator Center April 2009 - March 2010

117

	 Chapter 2	 Epoch-Making Simulation

大規模科学計算向け汎用数値ソフトウェア基盤の開発

プロジェクト責任者

西田　　晃　　九州大学情報基盤研究開発センター

著者
西田　　晃　　九州大学情報基盤研究開発センター

本プロジェクトでは、従来それぞれの分野において別個に進められてきた並列アルゴリズムや実装に関する知見をも
とに、 大規模化が予想される今後の計算環境に対応したスケーラブルなソフトウェア基盤を整備することを目的として、
反復解法、高速関数変換、及びその効果的な計算機上への実装手法を中心に、平成 14年度より科学技術振興機構戦略的
創造研究推進事業の一環として、多様な計算機環境を想定した開発を行っている。モジュール化されたインタフェース
を採用し、複雑な機能を持つライブラリを容易に構築できるようにするとともに、スケーラビリティの観点から並列化
に適したアルゴリズムを開発、実装し、高並列な環境での使用に耐えるライブラリを実現している。本研究の成果はネッ
トワークを通じて広く一般に配布し、フィードバックをもとにより汎用性の高いソフトウェアとしていく方針を採って
おり、平成 17年 9月よりソースコードを無償公開するとともに、ユーザの要望を反映した更新を適宜行なっている。平
成 18年度からは、地球シミュレータセンター共同プロジェクトの一環として、 高並列なベクトル計算機環境への最適化
を実施し、その成果をライブラリとして公開している。
反復解法においては、疎行列ベクトル積が計算時間の大半を占めることが多く、性能の最適化は最も重要な課題のひ

とつである。しかしながら、疎行列ベクトル積の性能は、行列の形状、並列化手法、メモリの階層構造等によって大き
く性能が変化するため、すべての場合に最適な解法を見出すのは難しい。そこで、本年度は様々なデータ格納形式・並
列化手法における疎行列ベクトル積の性能を事前に評価するためのベンチマークプログラムを Lis上に実装・公開し、
その有効性を複数の計算環境を用いて評価した。本ベンチマークは局所的なものであるが、これによって解法の計算性
能をある程度正確に見積もることが可能になった。

キーワード : 高性能計算 , 並列アルゴリズム , モジュール化

