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A 4-dimensional variational data assimilation system has been used to better define the 50-year state estimation of the global

ocean. The synthesis of available observations and a pelagic ecosystem model based on nitrogen cycle produces a dynamically self-

consistent dataset. In our 4D-VAR approach, optimized 4-dimensional datasets are sought by minimizing a cost function on the basis

of Green’s function approach. The assimilated elements are the climatological monthly mean nitrate from WOAOS5, monthly mean

ocean color data from SeaWiFS, and annual mean chlorophyll-a from WOAO98 as detritus. Tentative analyses imply that the obtained

ocean state estimation possibly has greater information than do models or data alone.
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1. Introduction

The ocean acts as a major sink for anthropogenic CO, (e.g.,
Solomon et al., 2007)[1]. To describe the dynamic state of CO,
in the ocean is a major concern for researchers of global change.
Rienecker et al. (2010)[2] mentioned an advantage of “Integrated
Earth System Analyses” at OceanObs’09. A physical-
biogeochemical ocean model, coupling with the atmosphere,
sea-ice, and also with the land surface is a promising in climate
research in the future.

In this study, we have conducted a global ocean synthesis

on the basis of in situ bio-geochemical observations, satellite

images and a global lower-trophic ecosystem model through
a 4D-VAR data assimilation to obtain a comprehensive
4-dimensional integrated dataset. The dataset include an
estimate of the global biogeochemical variables toward an

Integrated Earth System Analyses.

2. Model

The background dynamical ocean state is derived from ocean
data assimilation system, based on ocean general circulation
model (OGCM); version 3 of the GFDL Modular Ocean Model
(MOM) (Pacanowski and Griffies, 1999)[3] with major physical
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Fig. 1 Schematic view of NPDZC-model [see the text for details].
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parameter values determined through a variational optimization
procedure (Menemenlis et al., 2005)[4]. The horizontal
resolution is 1° in both latitude and longitude, and there are
46 vertical levels for the global ocean basin. The ocean data
assimilation system is on the basis of 4-dimensional variational
technique to obtain a comprehensive 4-dimensional dynamical
ocean state from 1957 to 2006 (e.g., Masuda et al., 2010)[5].

We introduce a new bio-geochemical model NPDZC-model
by using the obtained dynamical ocean state. It consists of 6
state variables representing the biomass of phytoplankton (P),
zooplankton (Z), nitrogen (N), carbon (C), and detritus (D). This
model is the pelagic ecosystem model based on nitrogen cycle
and is optimized for the Earth Simulator. A NPDZC-model
added function for the carbon cycle to the original NPDZ-model
(Fig. 1).

3. Optimization
We carried out a data synthesis scheme by which available
information from observations is integrated to obtain a set

of optimized model parameters. This scheme is a kind of
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Fig. 2 Distribution of DIC in a vertical cross
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4-dimensional variational method through Green’s function
approach. Menemenlis et al. (2005)[4] successfully apply this
approach to OGCM. We search an optimal set of major model
parameters for NPDZC-model by using WOAO5 monthly mean
nitrate, pseudo detritus values converted from WOAO9S8 annual
mean chlorophyll-a, and SeaWiFS monthly mean value (Sep.
1998 ~ Aug. 2008) as the observation of phytoplankton.

4. Results

The obtained synthesis results were compared with observed
data in WHP (WOCE Hydrographic Program) revisit survey.
P14 line near 179E was adopted in comparison. (The revisit
cruise on P14 was carried out in 2007 by JAMSTEC R/V
MIRAL) Figures 2 and 3 show the distribution of total carbon
and alkalinity, respectively. These panels illustrate the synoptic

patterns are by and large consistent with observations.

5. Concluding Remarks
Advanced ocean data assimilation techniques have led to

better understanding of ocean climate change and will possibly
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Fig. 3 Same as Fig. 2 but for Alkalinity.
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contribute to the resolution of scientific issues on global
warming. This report implies that our synthesis scheme for
sparse observations including bio-geochemical parameters is
possibly promising and useful for “Integrated Earth System

Analyses”.
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