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High resolution simulations of the Venus and the Mars atmospheres have been performed by using a General Circulation Model
(GCM) based on AFES (Atmospheric GCM for the Earth Simulator). Our aim is to have insights into the dynamical features of
small and medium scale disturbances in the Earth-like atmospheres and their roles in the general circulations. As for the simulation
of the Venus atmosphere, atmospheric superrotation consistent with observations is reasonably reproduced with a realistic solar
heating. Analyses of a polar vortex with realistic cold collar, neutral waves, and the thermal tide at the cloud levels as well as spectral
analyses of the horizontal kinetic energy are performed. The results indicate that the vertical distribution of static stability, dynamical
effects of the thermal tide, and the sufficient model resolution to represent those features and their effects are crucial for reproducing
realistic structures of the Venus atmosphere. As for the simulation of the Martian atmosphere, nature of small scale vortices which
have been observed in our previous high resolution simulations is examined. Those small scale vortices in the low latitudes are one
of the most prominent features in our model and are anticipated that those are generated as a result of convective activity represented
in the model. Analysis of vorticity and divergence near the ground shows that the small scale vorticies are associated with horizontal

divergence of almost the same size. This result supports the convective generation hypothesis written above.

Keywords: planetary atmospheres, superrotation, Venus, dust storm, Mars

atmospheres by using GCMs with a common dynamical core of
AFES [1].

1. Introduction

The structure of the general circulation differs significantly
in each of the planetary atmospheres. For instance, the
atmospheres of the slowly rotating Venus exemplifies the 2. Venus simulation
states of superrotation where the equatorial atmospheres rotate In order to understand the physical mechanisms generating
quite faster than the solid planets beneath, while the equatorial superrotation in the Venus atmosphere, low-resolution GCMs
easterly and the strong mid-latitude westerly jets form in the have been used to simulate phenomena in the Venus atmosphere
Earth’s troposphere. The global dust storm occurs in some in the past two decades. In this study, we perform simulations
years on Mars, while a similar global storm does not exist in with very high resolutions to investigate properties of
the Earth’s atmosphere. Understanding physical mechanisms disturbances in a wide range of scales in the Venus atmosphere.
causing such a variety of features in the general circulations of ~ The atmospheric waves are important targets to take advantage
the planetary atmospheres is one of the most interesting and of a high resolution model.
important open questions of the atmospheric science and fluid A Venus model includes simple physical processes[2,3], i.e.,
dynamics. The aim of this study is to understand dynamical vertical eddy diffusion with a constant diffusion coefficient of
processes that characterize the structure of each planetary 0.15 m%/s, the Newtonian cooling, and the Rayleigh friction at
atmosphere by performing simulations of those planetary the lowest level representing the surface friction. In the upper
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region above about 80 km, a sponge layer is assumed; the

friction increasing gradually with altitude acts to damp the eddy

component only. In addition, the model includes a 4th-order

horizontal diffusion (V*).

The Venus simulation starts from an idealized superrotation,
and the model atmosphere reaches a quasi-equilibrium state.
The meridional distribution of zonal flow agrees very well with
observations [4, 5]. The highest resolution is extended from
T159L120 to T319L120 and T159L240, which are equivalent to
a horizontal grid size of about 40 km with 120 vertical layers (dz
~ 1 km) and about 79 km with 240 vertical layers (dz ~ 500 m),
respectively. The main results are as follows.

(1) Realistic atmospheric superrotation and the Y-shape and/
or the Bow-shape structures consistent with observations
are reproduced at the cloud levels in the model, and it is
suggested that the thermal tide contributes to their structures.
Also, Kelvin-type and small-scale gravity waves appear in
the high resolution simulations (Fig. 1). Detailed analyses of
these waves are in progress [6].

(2) A new method formulated in the spherical harmonics space
is tested, which enables us to investigate the energy cascade
process between rotational and divergent components at
each wavenumber [7].

(3) Mean meridional circulation driven by the waves produces
continuous warming in the polar vortex, and it is also
confirmed that this process does not work in the run without
thermal tides [8] (Fig. 2).

(4) Vertical and temporal structures of temperature field
reproduced in the model agrees very well with the Venus
Express radio occultation measurements, and it is considered
that neutral Rossby waves caused by barotropic instability
explain its structure [9].

The results described above indicate that the Venus
simulation performed in this study is quite helpful to elucidate
the atmospheric phenomena observed at the Venus cloud
levels, and the generation mechanism of the Venus atmospheric

superrotation.

120E
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Fig. | Horizontal distribution of vertical flow (ms™) at 75 km simulated
in AFES Venus simulation with T1591.240 resolution.
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Fig. 2 Horizontal distribution of temperature (K) at 68 km in the polar
region simulated in AFES Venus simulation with T42L60

resolution.

3. Mars simulation

Radiative effect of dust suspended in the Martian atmosphere
has important impacts on the thermal and the circulation
structures of the Martian atmosphere. However, it has not been
well understood what kind of dynamical phenomena contribute
to dust lifting from the ground into the atmosphere. We have
been performing medium and high resolution simulations of
Martian atmosphere by using our model to reveal the features of
small and medium scale disturbances in the Martian atmosphere
and its effects on dust lifting. In this fiscal year, we investigate
another physical value associated with those small scale vortices
observed previously in the low latitudes in the model.

A Mars model includes physical processes introduced from
the Mars GCM [10, 11] which has been developed in our group.
The implemented physical processes are radiative, turbulent
mixing, and surface processes. With these physical processes,
effects of subgrid scale convection are evaluated by the
turbulent mixing parameterization based on Mellor and Yamada
[12] level 2.5.

Mars simulations are performed with a resolution of
T639L96 which is equivalent to about 11 km horizontal grid
sizes, and 96 vertical layers. The main result is as follows.
Figures 3 and 4 show snapshots of distributions of relative
vorticity and divergence at 4 hPa pressure level of the T639L.96
experiment, respectively. Here, we focus on the low latitudes.
It is shown that the small scale vortices observed in the low
latitude are accompanied by divergence with the same size.
In addition, the magnitude of divergence is as large as that of
vorticity. These support the hypothesis that the small scale
votices are generated by thermal convection represented in the

model.
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Fig. 3 Global distribution of vorticity at 4 hPa pressure level at
northern fall with the resolution of T639L96 without convective
adjustment. Unit of vorticity is 10° s™'. Also shown is the areoid
(solid line) and low latitude polar cap edge (dashed line). Gray
areas represent mountains at the 4 hPa pressure level.
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Fig. 4 Same as Fig. 3, but for global distribution of divergence.
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