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In order to investigate the origin of the banded structures observed at the surface of Jupiter and Saturn, we perform numerical

simulations of Boussinesq thermal convection in a whole thin spherical shell. The Prandtl number, Rayleigh number, the Ekman

number and radius ratio are 0.1, 0.05, 3x 10° and 0.85, respectively. We do not assume any longitudinal symmetry adopted in the

previous study.

Performing longer time integrations than a previous study, there appear a strong equatorial prograde surface zonal jet and weak

alternating banded zonal jets in mid- and high-latitudes simultaneously both in the 1/8 sector domain and in the whole shell, which

are similar to the zonal jet structures observed in Jupiter and Saturn. However, time variation of mean kinetic energy suggests that the

systems do not approach statistically steady states. Further time integrations are necessary for obtaining asymptotic states of mean

zonal distributions.
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1. Introduction

Surface flows of Jupiter and Saturn are characterized by the
broad prograde zonal jets around the equator and the narrow
alternating zonal jets in mid- and high-latitudes. ‘‘Shallow”’
models can produce narrow alternating jets in mid- and high-
latitudes, while the equatorial jets are not necessarily prograde.
On the other hand, ‘‘deep’” models, can produce equatorial
prograde flows easily, while it seems to be difficult to generate
alternating jets in mid- and high-latitudes.

Heimpel and Aurnou (2007[1]) proposed thermal convection
in rapidly rotating thin spherical shell models and show that the
equatorial prograde zonal jets and alternating zonal jets in mid-
and high-latitudes can be produced simultaneously when the
Rayleigh number is sufficiently large and convection becomes
active even inside the tangent cylinder. However, they assume
eight-fold symmetry in the longitudinal direction and calculate
fluid motion only in the one-eighth sector of the whole spherical
shell. Such artificial limitation of the computational domain may
influence the structure of the global flow field. For example,
zonal flows may not develop efficiently due to the sufficient
upward cascade of two-dimensional turbulence, or stability
of mean zonal flows may change with the domain size in the
longitudinal direction.

In order to clarify these points, we perform long time
numerical experiment of thermal convection both in the one-
eighth sector of the whole spherical shell and in the whole thin

spherical shell domain, where the experimental setup is the same
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as that of Heimpel and Aurnou (2007), and examine whether

differences in mean zonal velocity distributions appear or not.

2. Model

We consider Boussinesq fluid in a spherical shell rotating
with a constant angular velocity Q. The non-dimensionalized
governing equations consist of equations of continuity, motion,
and temperature [2]. The non-dimensional parameters appearing
in the governing equations are the Prandtl number, Pr = v/,
the Ekman number, Ek = vAQD’), and the modified Rayleigh
number, Ra = a g, AT’ D), where v, D, k, a, 7, , g,, and AT
are the kinematic viscosity, the shell thickness, the thermal
diffusivity, the outer radius of the shell, the thermal expansion
coefficient, the acceleration of gravity at the outer boundary, and
the temperature difference between the boundaries, respectively.
The spherical shell geometry is defined by the radius ratio,
x= r;/r,, where ri is the inner radius of the shell. The thermal
boundary condition is fixed temperature. Free-slip condition is
adopted at the top and bottom boundaries. The initial condition
of the velocity field is state of rest and that of the temperature
field is the steady state solution of the heat conduction equation

with random temperature perturbations.

3. Results
Time integration were done until 200000 non-dimensional
time (about 32000 rotation) for calculation in 1/8 sector domain,

and 70000 non-dimensional time (about 11000 rotation) for
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that in the whole spherical shell. These integration periods are
significantly longer than that done by Heimpel and Aurnou
(2007). Poloidal components of spatially averaged kinetic
energy are of the same magnitude between 1/8 sector and the
whole domain calculations. In contrast, toroidal component
for the whole domain calculation is slightly larger than that
for 1/8 sector domain calculation (Fig. 1), which means that
the difference between amplitudes of mean zonal velocity in
two cases is small. On the other hand, there seems to be no
clear difference in surface mean zonal velocity distributions;
the broad equatorial prograde flow and alternating jets in high
latitudes emerge in both cases (Figs 2 and 3). However, mean
kinetic energies still increase, which suggests that statistically
steady states are not achieved yet (Fig. 1). Longer time
integrations are needed to obtain asymptotic states of mean

zonal flow distributions.
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Fig. 2 Snapshots of longitudinal velocity at the surface of the spherical shell, viewed from an infinitely distant point above the equator. The left and

right panels show the cases with 1/8 sector domain (t=206600) and the whole spherical shell (t=70580), respectively. The result of calculation
in 1/8 sector domain is shown by plotting eight times repeatedly in longitude. Ra=0.05, Pr=0.1, Ek=3x10", x=0.85.
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Fig. | Time variation of spatially averaged kinetic energy. Solid
and broken lines indicate poloidal and toroidal components,
respectively. Red and blue lines denote the cases with 1/8 sector
domain and the whole spherical shell, respectively. Ra=0.035,
Pr=0.1, Ek=3x10", y=0.85.
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Fig. 3 Snapshot of mean zonal flows at the surface of the spherical shell. The left and right panels show the cases with 1/8 sector domain (t=206600)
and the whole spherical shell (t=70580), respectively. 1 non-dimensional velocity corresponds to 2000 m/s for Jupiter's atmosphere. Ra=0.05,

Pr=0.1, Ek=3x10", y=0.85.
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