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Direct numerical simulations of turbulent channel flows up to Re, =8000 were carried out by means of the high-order accuracy

finite difference method. Our DNS code achieved the high-effective computational performance corresponded to 70 TFlop/s at 2048

nodes on the Earth Simulator.

Present resolution of DNS database ensures over twice fine resolution of Kolmogorov wave length at all wall-normal heights. In
case of Re, = 8000, 8640 (4x'=14.8), 4096 (4y"=0.6-8.0), and 6144 (4z'=8.3) grid points (resolutions in wall-units) were adapted for

stream, wall-normal, and spanwise directions, respectively. Using our DNS code, the DNS database up to Re, =8000 can be obtained

during the long-time integration length.
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1. Introduction

Characteristics of high-Reynolds number wall-bounded
turbulence have been suggested by theoretical and experimental
studied. Especially, interactions between large-scale structures
on a logarithmic region proposed by Huchins & Marusics [1]
are interesting and well explain that the inner-scaled peak in the
stream-wise turbulent intensity increases with Reynolds number.
The remarkable features such as the second-peak in the pre-
multiplied spectrum were observed in the friction Reynolds
number (Re,) 7,300. Recently, direct numerical simulations (DNS)
of channel flows with Re, = 4000 were performed by Lozano-
Dur’an & Jim’enez [2] and Bernardini et al. [3]. More recently,
Lee & Moser [4] performed for Re, = 5200. However, some
differences such as the von Karman constant distributions between
Re, ~ 4000 and Re, = 5200 are reported by Lee & Moser [4].

In this study, we have developed the large-scale direct
numerical simulation (DNS) code of turbulent channel flows
based on the high-order accuracy finite difference scheme.
Using our DNS code, the DNS database up to Re, =8000 can
be obtained, and we investigate the interactions between large-

scale structures on a logarithmic region.

2. DNS procedures

As shown in Fig. 1, the target flow is assumed to be a fully
developed turbulent channel flow driven by the constant mean
pressure gradient in the streamwise direction. DNSs of the
incompressible Navier—Stokes equation are conducted by the

10th-order accuracy Finite Difference Method (FDM) proposed

f@f’

dP/dx = const.

Fig. 1 Computational domain and coordinate system.

by Morinishi et al. [5] for the stream- and spanwise directions,
and the second-order FDM for the wall-normal direction. To
detect the wavelength of the second-peak in the pre-multiplied
spectrum measured by Hutchins & Marusic [1], which is
corresponded to 6J, where J is the boundary layer thickness, the
computational domain size in all cases is adapted 164x2h%6.4h
for the streamwise (x), wall-normal (y), and spanwise (z)
directions, respectively, where / is the channel half width.

In a fully developed channel flow, the kinematic energy

balance integral over the channel cross section is given by Eq. (1),

nt 2 nt
+ 6U+ + + 7.+
O:Ub—.[ — | dy —Isdy . W
0 0
E Er

Here, U, is the bulk mean velocity, U is the streamwise

mean velocity, ¢ is the turbulent energy dissipation rate, and the
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superscript + denotes non-dimensional quantities normalized
by friction velocity (u,) and kinematic viscosity (v). The second
term (£) on the right side in Eq. (1) is the energy dissipation
by the mean velocity and the third term (£;) is the energy
dissipation by the turbulence. Laadhari [6] reports that E; is
greater than E for the friction Reynolds number (Re, = u, A/
v) > 500. Accordingly, present DNS starts from Re, = 500 up
to 8000. Present DNS conditions are tabled in Table 1, where
T denotes the time-integration length to obtain the turbulent
statistics, and 4x, Ay, Az are the grid resolutions for the
streamwise, wall-normal, and spanwise directions, respectively.
In case of Re, =8000, time integration length: 7"/Re, =6.3 is
correspond to 10 wash-out times, where a wash-out is defined
as the time taken by a fluid particle at the centreline to cross the
computational box ; L =16A.

Figure 2 shows the wall-normal grid resolution in case of Re,
=4000. Notes that /; is the Kolmogorov length and resolutions of
Re, =4200; Lozano-Duran & Jimenez [2], Re, = 4079; Bernadini
et al. [3] and Re, = 5200; Lee & Moser [4] were also plotted in
Fig. 2. Present resolution ensures over twice fine resolution of
Kolmogorov wave length at all wall-normal heights. In case of
Re, = 8000, DNS in 8640x4096x6144 grid points for stream,
wall-normal and spanwise directions was carried out by using
the two-types of Peta-scale supercomputer systems. One is a
vector-parallel supercomputer system; NEC SX-ACE/1024nodes
at Japan Agency for Marin-Earth Science and Technology
(JAMSTEC). The other is the Plasma Simulator; Fujitsu
FX100/2048nodes at National Institutes for Fusion Science
(NIFS). Elapse time per each time-step is 3.6 s by using SX-
ACE/2048nodes and FX100/2048nodes, respectively.

Table 1 DNS conditions

Re, Ax” Ay” Az T/Re, U, E,
500 9.3 0.2-5.3 6.3 13.1 18.22 9.06
1000 11.1  0.3-8.0 8.3 12.0 19.92  10.94
2000 11.1  0.3-8.0 8.3 10.0 21.74  12.76
4000 11.1  0.3-8.0 8.3 9.0 2327 14.29
8000 148 0.3-8.0 8.3 6.3 2497 16.30
15—
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Fig. 2 Wall-normal grid resolution in case of Re, =4000.

3. Validation of present DNS Database
In steady-state fully developed channel flow, the total shear

stress shows a liner profile as function of wall-normal height (y)

as follow;
~ X vt dU+ , )
Re. dy

Here, _;** denotes Reynolds shear stress. To check
statistical errors in DNS data, Tompson et al. [7] used the
following residual in shear stress balance;

+ y+ +.+ !
E =1- +u'v — ) 3
R(y ) Re, dy+ 3)

Figure 3 shows the shear stress profiles in case of Re, =8000,
and residuals (£y) in all cases are shown in Fig. 4. We can
confirm that the total shear stress profile in case of Re, =8000
shows a liner profile and the residuals of present DNS database
is less than 0.05. For these results, time integration lengths of
present DNS database can be considered larger than the least
length to obtain the fully developed status.

The adequacy of the grid resolution used for the present
DNSs has been verified through a grid sensitivity study carried
out at Re, =1000, for reasons of computational feasibility. The
grid sensitivity for the streamwise pre-multiplied spectrum in
case of Re=1000 are shown in Fig. 5, here the DNS result by
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Fig. 3 Total shear stress profiles in case of Re, =8000.
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Fig. 4 Residual in shear stress balance in all cases.
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a hybrid code of Fourier spectral method for x and z directions
and second order accuracy FDM for y direction, Yamamoto &
Kunugi [8] was used as the reference data. The resolution in Fig.
5-(a) is as same as in cases of Re, =2000 and 4000 in present
DNS database, and one in Fig. 5-(b) is as same as in case of Re,
=8000. In this study, the streamwise energy spectrum; E,, is
defined by

wi = [E,dk, 4)

Here, £, is the streamwise wave-number. Any difference
caused by the grid resolution can’t be observed, and both results
by present FDM code are in good agreements with the result by

spectral method.

4. Results
4.1 Von Karman constant

Figure 6 shows the indicator function g (=y"dU/dy"). The
profile in 5200 by Lee & Moser [4] is also plotted in Fig. 6. Lee
& Moser [4] shows that the indicate function of Re, = 5200 has
a plateau profile between y* = 300 and y/h = 0.15. The profile of
Re=4000 is in good agreement with Lee & Moser [4], though it
is a little low-Reynolds number. The profile of Re, = 8000 also
shows the constant value; f = 2.6 between y” = 300 and /4 = 0.15
(y=1200).
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Fig. 6 Distribution of indicator function.

4.2 Streamwise turbulent intensity

Figure 7 shows the variance of streamwise turbulence as a
function of y/h. The results of Re=1000 and 5200 by Lee &
Moser [4] are also plotted in Fig. 7. Townsend’s attached eddy
hypothesis [9] implies that in the high Reynolds number limit,
logarithmic variation of the streamwise velocity variance. There
are no clear range of logarithmic variation in case of Re, =8000.
However, the plateau region from y/4 =0.01 to 0.03 can be
observed in case of Re, =8000. To comparison with results by
Lee & Moser [4], present results show the underestimation of
the peak value. To obtain the quantitative agreements in the peak
value of streamwise variance, the present 10th FDM code needs
to use the higher resolution; 4x"=9.0 as shown in Fig. 8. Besides,
this underaestimation tendency of present DNS database can be
observed only in 10 < y" < 40, and quantitative agreements with
spectral data by Lee & Moser [4] and Yamamoto & Kunugi [8]

are confirmed in other wall-normal heights.
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Fig. 5 Grid sensitivity for the streamwise pre-multiplied spectrum in
case of Re=1000, (a) Ax'=11.1, 4y'=0.6-8.0, 4z'=8.3 by preset
FDM code, (b) 4x'=14.8, 4y'=0.6-8.0, 4z'=8.3 by preset FDM
code, and (c) 4x'=12.0, 4y'=0.6-8.0, 4z'=8.3 by a hybrid Fouries
spectral (x and z) and 2nd FDM (y) code.
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Fig. 7 Variance of streamwise turbulence as a function of y/A.
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Fig. 8 Comparison of streamwise turbulent intensity near peak region in
case of Re, =1000.

4.3 Turbulent energy budget

Reynolds number effects on turbulent kinetic energy budget
are appeared in the ratio of production and dissipation rate, and
the triple correlation of turbulent disunion term as shown in Fig. 9.

Figure 9-(a) shows the ratio of production and dissipation
rate of turbulent kinetic energy. The peak value of the 1st peak
at the buffer region are slightly decreased with increasing
of Re,. The reason is why the dissipation rate is increased
with increasing of Re,, but the production at this wall-normal
height is almost constant for Re, > 1000. As well as results of
Bernadini et al. [3] and Lee & Moser [4], the other region in
which production exceeds dissipation can be observed from y/h
<0.2 for Re, > 1000, and this region is larger with increasing of
Re.. These results show that the increasing of the streamwise
turbulent intensity with increasing of Re, will be caused by the
turbulent production far from wall-region at y/4 < 0.2.

The remarkable change at this wall-normal height at y/h = 0.2
can be observed in the triple correlation of turbulent diffusion

term in turbulent kinetic energy for Re> 4000. In case of Re.>
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Fig. 9 Reynolds number effects on turbulent energy budget; (a) the ratio
of production and dissipation rate, and (b) triple correlation of
turbulent diffusion term.
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2000, the profiles of triple correlation have the two peaks as
shown in Fig. 9-(b). The appearance of the second peak is
reported by Hoya & Jimenez [10] for Re, =2000. In case of Re,
> 4000, the magnitude of second peak at y/4 =0.2 exceeds of the
fist peak. This indicates that energy flows through the turbulent
diffusion toward the wall and turns toward the channel center at
the boundary; y/h =0.2.

5. Conclusions

In this study, we have conducted DNSs of turbulent channel
flows with world’s largest Reynolds number by means of the
Earth Simulator. Present DNS code achieved the high-effective
computational performance corresponded to 70 TFlop/s at 2048
nodes on the Earth Simulator, and DNS database under the long

time-integration length was achieved.
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