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Typhoons cause major natural disasters such as heavy rains and floods in many parts of the world including Japan. In 2016, the
first-typhoon over the Northwestern Pacific (Nepartak) was generated at July 3, which was considerably later than that on average.
After Nepartak, many typhoons were generated in the Northwestern Pacific and the accumulated number of typhoons in 2016 reaches
26, which was almost equal to the mean. However, it is not clear whether model can reproduce such an extreme typhoon year like
2016. Although relationship between El Nifio and typhoon activity has been pointed out, mechanisms that the genesis of the first-
typhoon occurrence is extremely delayed in the year following El Nifio and how such an environment affects intensity of typhoon
remain controversial because of few El Nifio events in observation. In this study, we conducted large ensemble simulations using a
high-resolution global non-hydrostatic atmospheric model called NICAM to investigate delay of the first-typhoon generation in 2016
and 1998. Preliminary analysis shows that the model captures the delay of the typhoon generation and some features in 2016 and
1998.

Keywords: Typhoon, post-El Nifio, ensemble simulation

1. Introduction

Tropical cyclones including typhoons and hurricanes
causes natural disasters, and attract not only scientific but also
socioeconomically attentions. If accurate probability predictions
of typhoon activity in one month, seasonal, and annual scale

were achieved, this system would contribute to a reduction of

damages associated with typhoon.

Focusing on the activity of typhoon in the western North
Pacific, 2016 was a extreme year. For instance, according
to a best-track dataset provided by the Japan Meteorological
Agency, the first-typhoon (Nepartak) was generated at July 3.
Its genesis date was late relative to usual years. Year of the most
delaying genesis was 1998, and its date was July 9. The delaying
in 2016 follows 1998. In years when typhoons in the western
North Pacific were not generated until early summer, there is a
common characteristic in post-El Nifio event. Warm sea surface
temperature anomalies in the Indian Ocean were observed

during decaying El Nino. This warm anomaly formed high-
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pressure anomalies over the western North Pacific, and suppress
convections [1]. Du et al. [2] showed that, in this period,
typhoons tend to not be generated in the western North Pacific.
In 1998, annual typhoon genesis frequency was 16, which had
fewer than that in usual year. In 2016, however, the annual
frequency is 26 comparable to usual year.

The delaying genesis date of the first-typhoon may be related
to El Nifio Southern Oscillation. However, the number of
recorded El Nifio events is limited in observation [3]. This may
complicate statistical discussion on relationships between El Niflo
Southern Oscillation and typhoon activity. In our research group,
climate simulation was performed for 30 years between 1979
and 2008 using a high resolution global non-hydrostatic model
called NICAM [4, 5, 6]; and the model relatively well simulated
horizontal distribution of tropical cyclogenesis and its seasonal
change [7]. Furthermore, the result of the simulation showed that
typhoons were not generated until early summer in 1998 (Fig. 1).

In this study, a large ensemble simulation is conducted
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Fig. 1 Monthly genesis number of typhoon from NICAM AMIP
simulation [7]. Black line shows average value from 1979 to
2008, and gray-colored region shows standard deviation. Red

circle shows the number of monthly typhoon genesis in 1998.

using high-resolution NICAM, to gain knowledge for typhoon
prediction in one month, seasonal, and annual scale. By using
NICAM, we aim to understand the response of typhoon to
El Nifio and to contribute to an improvement of the accuracy
of typhoon seamless prediction. As a first step, we conduct
50-member ensemble simulations of boreal summer (June to
October) in 2016 and 1998; and report preliminary results of the

ensemble simulations.

2. Methodology

NICAM was used for ensemble simulations in 2016 and
1998. The horizontal grid spacing was 14 km without cumulus
parameterization. The model setting was the same as Kodama
et al. [7] except that the gravity wave drag scheme [8] was
implemented. Sea surface temperature was calculated by a slab
ocean model, which was nudged to observation [9]. Figure 2
shows horizontal distribution of sea surface temperature averaged

during June to October in 2016 and 1998. The sea surface

) 2016
ON

90E 120 150 180 B0W

-3 -2 -1 0 1 2 3 (°C)

Fig. 2 Horizontal distributions of observed sea surface temperature
(contour) and its anomaly relative to climatology (shade) in
Jun2016 and 1998. The contour interval is 1 degree Celsius. The
climatology is defined by averaging the observed sea surface
temperature over 1982 and 2015.

temperature anomalies in 1998 show a typical horizontal
distribution of La Nifia where the sea surface temperature declines
in the equatorial Eastern Pacific, and the positive temperature
deviation is shown overall in the Indian Ocean. As for 2016, the
anomalies show the weaker negative anomaly in the equatorial
eastern Pacific than that in 1998, and we could not confirm the
uniform positive anomaly seen in 1998 over the Indian Ocean.
The initial condition was prepared by interpolating from the
JRA-55 reanalysis [10, 11]. The 50 members were produced by
changing the initial time by 6 hourly from May 19th (18UTC)
to June 1st (OOUTC) for 2015 and 1997. These ensemble
simulations for 2016 and 1998 are referred to as EN16 and EN98
runs, respectively. In order to confirm whether NICAM was able
to reproduce the condition that typhoon does not occur until July
in 2016, we conducted 9-member ensemble simulation in which
initial days was changed by 10-day from March 1 to May 11.
This ensemble simulation is referred to as EN16T run. Simulated

typhoons were detected by utilizing a tracking method [12].

3. Results and future works

Figure 3 shows cumulative typhoon genesis number in
EN16T and observation from January 1 in 2016. In ensemble
members started from April 11 and May 1, the first-typhoon is
generated at mid-May (about 135 days from January 1). As for
ensemble members started from March 11 and 21, and May 11,
the first-typhoon is generated at mid-June (about 167 days from
January 1). In the other members, however, the simulated first-
typhoons are generated on the date closer to the observation (July
3). In general, NICAM reproduces the delaying genesis date of
the first-typhoon in 2016. Furthermore, in the members initiated
on March 1 and 11, and May 1, cumulative genesis number

reaches 12, which are comparable to observed number (13).

2016
15 03/01 —— 03,21 —— 04/11 —— 05001 —— JMA ——
03/11 ——— 04/01 04/21 0511 ——

Cumulative Number

30 60 90 120 150 180 210 240 270
Day of Year

Fig. 3 Time series of cumulative number of typhoons from January
1 in 2016 from EN16T run and observation. The colored lines
indicate the respective ensemble member, and the black line is
the observation value created from the best track produced by

Japan Meteorological Agency.

Figure 4 shows the cumulative genesis number of typhoons
since June 1 in EN16 and EN98 runs, and observation. The
observation shows that the number of typhoon has increased

rapidly since late July in 2016 compared with 1998. In the
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results of ensemble simulations, the number of typhoons in
EN16 run has increased since June earlier than the observation.
The model may simulate that cumulative genesis number in
2016 is larger than that in 1998 as seen in the observation. In the
future, we will compare differences in typhoon activity, such as
genesis location, and environmental conditions between 2016
and 1998 using the results of EN16 and EN98 runs.

2
- Clim(JMA besttrack) - - - -
2016(JMA besttrack) - - - -
1998(JMA besttrack) - - - - s
20 2016(ensemble mean) o

1998(ensenble mean) o -

0
JUN
Fig. 4 Time series of cumulative typhoon number from June 1. The

JuL AUG SEP OCT

dotted line shows the observation by the best track of Japan
Meteorological Agency; black means the average value from
1979 to 2008, blue indicates 2018, red indicates 1998. The gray
area shows the standard deviation of observation. The bold solid
line shows the results of EN16 run (blue) and EN98 run (red). The
thin solid line shows the standard deviation of the ensemble mean.
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