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This paper investigates flow structures around a rotating small axial fan that is one of general-purpose products. A reference
length and velocity are a diameter of the fan and the velocity of impeller at the tip. Based on such reference length and velocity, a
Reynolds number is 1.6x10°. The flow around the fan is simulated by means of large-eddy simulations (LES) with highly accurate
and resolution computational scheme. Results present that flow separates from the edges of the impeller and the tip of the impeller
during the rotation. It is observed that multiple vortices are shed from the separated shear layers from the edges. Also, it is found that
the leading edge and tip vortices possess periodic behavior while the trailing edge vortex has unsteady one. From above-mentioned
observations, it is suggested that an interaction among the vortices observed at the suction side of the impeller could be one of

aerodynamic noise sources.
Keywords: Large-eddy simulations, Vortex, Fan, Noise, High Resolution Scheme

1. Background scheme is attractive and has a benefit in terms of computational
Recently, miniaturization of industrial and commutated costs and resolution of the results in comparison with the results

machinery and industrial house electric appliances has been using standard computational scheme.

required and promoted. Such downsizing the products often As motivated by previous efforts, this project investigates

cause the increase of the heating density inside them. For the flow around a rotating axial fan with a high-resolution

most of products employing the air-cooling, it is likely to computational scheme. The objectives of this study are to obtain

necessary to increase a mount of the airflow for cooling better understanding of detailed flow structures around the fan

the products by increasing the rotational speed of the fan. and to discuss a possible source of the aerodynamic fan blade

Increasing the rotational speed of the fan results in an increase noise.

of aerodynamic noise due to the pressure fluctuation of flow

around the fans. In order to reduce such aerodynamic noise 2. Case Description

it is necessary to measure the flow structures around the fan Current study considers the axial fan. The number of the

and the noise generation. Large-eddy simulations (referred as impellers of the fan is seven. The fan is a general-purpose and

LES, hereafter) have been performed using high performing often used in domestic electrical appliances. For the simple

computing infrastructure in order to obtain detailed flow purpose, this study considers only the boss and the impellers.

structures around the rotating fans. Numerical results have A Reynolds number based on the diameter of the impeller (L,,,)

offered our understanding of flow structures around the and the impeller peripheral speed at the tip (U,,) is 1.6x10°. This

fan [1,2]. Computational results in the case of five hundred condition corresponds to a maximum flow rate of the fan. Flow

million computational grid points show certain improvement around the axial fan is initially quiescent.

in the prediction of turbulence-related aerodynamic noise

of a centrifugal fan because of accurately capturing near the 3. Numerical Method

boundary layer turbulence [2]. Unlike increase of computational There-dimensional compressible spatially filtered Navier-

grid point, a LES of the fan with high-resolution computational Stokes equations are employed as the governing equations are
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solved in the generalized curvilinear coordinates. The spatial
derivatives of the convective and viscous terms and symmetric
conservative metrics [3-5] and Jacobian [5] are evaluated by a
sixth-order compact difference scheme [6,7]. The sixth-order
compact scheme can reduce the total number of computational
grid points required due to its high-resolution. At the first and
second points off the wall boundary, a second-order explicit
difference scheme is used. In this study, the LES approach
is selected so as to avoid the uncertainty of the results that
arise due to modeling boundary layer turbulence. Resolving
the boundary layer turbulence is important to accurately
compute unsteady flow phenomena such as flow separation
and reattachment. Whereas additional stress and heat flux
terms are appended in an ordinary LES approach, they are
not implemented in an implicit LES approach [7-11]. In this
study, based on the supposition that a high-order low-pass filter
selectively damps only unresolved high-frequency waves, the
implicit LES is employed. A sixth-order filtering is used with
a filtering coefficient of 0.45. This implicit LES approach has
been well validated by Visbal et al. [7-10] for many problems
and results of the implicit LES model have shown a good
agreement with the experimental data and numerical results
with standard subgrid-scale models. For time integration, the
second-order backward difference is adopted and it is converged
by the five sub-iterations [12] of the alternating directional
implicit symmetric Gauss-Seidel implicit method [13,14] in
each time step. The computational time step is 5x10™ L./U,
that corresponds to maximum Courant number of approximately
25. Total number of time step required for one revolution of
the fan is ten thousand. A zonal method [15,16] is used to treat

the complicated geometry of the fan. At the outer boundary, all

(a-1) (a-2)

variables are extrapolated from one point in front of the outflow
boundary. Here, the static pressure is fixed as the atmospheric
pressure. Moreover, a sponge region [17] is assigned in order to
avoid reflection of pressure wave due to existence of boundary
in the space (over fifty-five L, from the center of the boss). No-
slip and adiabatic-wall conditions are adopted for the surfaces
of the impellers and the boss. For treatment of moving impeller
and boss, all computational grids rigidly rotate about the axial
axis and rotational speed is prescribed on the moving surface of
the fan.

4. Results

Figure 1 shows a comparison of instantaneous and phase-
averaged flow structures around the fan at the specific time.
Although the leading-edge and tip vortices are observed in both
instantaneous and phase-averaged flow structures, trailing-
edge vortices can be found in only the phase-averaged flow
structures. This indicates that the dominant time scale of
trailing-edge vortices is different to the period of rotation of
the fan. Furthermore, Fig. 2 presents an instantaneous surface
pressure distribution over the selected locations of the impeller
in the spanwise direction. It is found that shedding vortices from
the leading-and trailing-edge and the tip significantly affect
the sectional pressure distribution of the impeller. A separated
leading-edge shear layer is presented on the pressure side of
the impeller near the root of the impeller while is shown on
the suction side of the impeller near the tip of the impeller. An
effective angle of the flow based on the impeller peripheral
speed and the axial flow induced by the rotating fan seems to
vary in the spanwise direction. Figure 3 shows distribution of the

surface pressure fluctuation with respect to phase-averaged data

(b-1) ®-2)

0 Vorticity magnitude 10
| -

Fig. 1 Visualization of flow structures around the impeller: instantaneous field, (a-1) and (b-1); phase-averaged field, (a-2) and (b-2).
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Fig. 2 Sectional vorticity and surface pressure distributions around the selected spanwise location of the impeller.
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Fig. 3 Root-mean square of pressure fluctuation distribution of the
impeller surface: Suction side (left) and pressure side (right).

on the impeller. The left and right side of images correspond
to the suction and pressure side of the impeller, respectively.
Together with Figs. 1 and 2, there are pressure fluctuations
due to the leading- and trailing-edge vortices. Moreover, the
pressure fluctuation appears near the impeller tip of the pressure
side because of an interaction among the impellers nearby and
trailing-edge vortices. In total, the surface pressure fluctuations
are most likely to be source of aerodynamic fan noise. The main
mechanisms of them are the vortex shedding from the edges and

the interaction between shedding vortices and the impellers as

expected.

5. Conclusion

This study studied the flow structures around the rotating
axial fan at the Reynolds number of 1.6x10° by using the LES
with the high-resolution computational scheme. Numerical
simulations presented separated flow and vortical structures
around the impellers and the boss. Vortices generated from the
trailing-edge possessed the different time-scale in comparison
with those of other vortices observed. However, all vortices
and the interaction between the impellers and shedding vortices
produce pressure fluctuation on the surface of the impeller that

seems to be a main source of aerodynamic fan noise in the

operational condition considered.
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