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Banded structures and alternating zonal jets observed in the surface atmospheres of Jupiter and Saturn have attracted many

researchers in planetary atmospheric sciences, however, their physical explanations and understandings are not satisfactory. In this

study, we try to perform massive parallel numerical experiments treating both small scale convection and planetary scale flows

simultaneously, and to illustrate dynamical origin of global scale structures of surface flows of Jovian planets.

For this purpose, we developed and parallelized an anelastic model of thermal convection in a rotating spherical shell considering

basic radial density variation. The spectral transform library used in this model was improved to introduce MPI parallelization in the

radial direction as well as in the latitudinal direction. As a result, we succeeded in increasing the number of parallel processes which

had been limited by the number of latitudinal grid points, and more massive parallel numerical experiments became possible.
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1. Introduction

Surface flows of Jupiter and Saturn are characterized by
broad prograde zonal jets around the equator (equatorial
superrotation) and narrow alternating zonal jets in mid- and
high-latitudes. "Shallow" models can produce narrow alternating
jets in mid- and high-latitudes, while equatorial jets are not
necessarily prograde. On the other hand, “deep” models can
produce equatorial prograde flows easily, while it seems to be
difficult to generate alternating jets in mid- and high-latitudes.

One of the research to overcome these difficulties is
performed by Heimpel and Aurnou (2007) [1], proposing
thermal convection in a rapidly rotating thin spherical shell
model. They showed that the equatorial prograde zonal jets and
alternating zonal jets in mid- and high-latitudes can be produced
simultaneously when the Rayleigh number is sufficiently large
and convection becomes active even inside the tangent cylinder.
Successive studies for the zonal flow generation problem in thin
rotating spherical shells have been performed, some of which
deal with radial density contrast using anelastic systems. (e.g.
Gastine et al. 2014 [2], Heimpel et al. 2015 [3]).

However, these studies assume longitudinal symmetry and
calculate fluid motion only in a sector of the whole spherical
shell. Such artificial limitation of the computational domain
may influence the structure of the global flow field. For
example, zonal flows may not develop efficiently due to the

sufficient upward cascade of two-dimensional turbulence, or
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stability of mean zonal flows may change with the domain
size in the longitudinal direction. Moreover, their integration
times seem to be insufficient for achieving statistically steady
states. In order to clarify these points, we performed long time
numerical experiment of thermal convection both in the one-
eighth sector of the whole spherical shell and in the whole thin
spherical shell domain, where the experimental setup is the
same as that of Heimpel and Aurnou (2007). The results show
that a strong equatorial prograde surface zonal jet and weak
alternating banded zonal jets in mid- and high-latitudes appeared
simultaneously in the 1/8 sector domain calculation, while in the
whole domain calculation, banded zonal jets in mid- and high-
latitudes disappeared and only three prograde jets (equatorial
and high-latitudes jets) survived (Takehiro et al. 2015 [4]). This
suggests that large-scale and high-resolution simulations with
long integration time are necessary for investigating origin of

the banded structure and equatorial superrotation.

2. Model development and parallelization

For this purpose, we improved the spectral transform library
used for performing long-term integration of high-resolution
simulations of Jovian and Saturnian atmospheric flows. MPI
parallelization is introduced not only in the latitude direction
but also in the radial direction. As a result, we succeeded in
increasing the number of parallel processes which had been

limited by the number of latitudinal grid points, and more
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massive parallel numerical experiments became possible.
Further, we developed an anelastic model of thermal convection
in a rotating spherical shell considering basic radial density
variation, and parallelized it using the improved spectral
transform library. For the implementation, the model variables
divided in the radial direction are needed to be gathered in order
to calculate radial differentiation and to adapt radial boundary
conditions in each time step, however, the model showed high
parallelization performance because communication costs
between the processes are negligible comparing with those for
spectral transform.

Figure 1 shows the calculation speeds of the model for various
extent of MPI parallelization under the benchmark setup (Jones
et al. 2011 [5]). In the case with no parallelization in the radial
direction (NPV=1), the elapsed time decreased in proportion to
the number of MPI processes until 256 processes, which was the
limit of efficient parallelization. In contrasts, by increasing the
processes for radial parallelization from 4 to 32, the elapsed time
could be reduced for larger number of MPI processes.

Figure 2 shows the results of follow-up numerical experiments
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Fig. | Benchmark results of the anelastic spherical convection model

on the Earth Simulator. The numbers of grid points in the
longitudinal, latitudinal and radial directions are 4096, 2048,
64, respectively. Calculations are performed by OpenMP
parallelization with 4 threads and MPI parallelization. The
horizontal axis is the number of MPI processes, and the vertical
axis is the elapsed time for 100 steps. The numerals with
"NPV" in the figure indicate the number of processors for radial
parallelization.

Fig. 2 A follow-up experiment of a benchmark
calculation for anelastic spherical
convection model (Jones et al. 2011 [5]).
The Ekman, Rayleigh, Prandtl numbers
and the radius ratio are 107, 351806, 1
and 0.35, respectively. The numbers of
grid points in the longitudinal, latitudinal
and radial directions are 1024, 512, 64,
respectively. The numbers of processes

for parallelization in the latitudinal
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performed with our model for the benchmark calculations
proposed by Jones et al. 2011 [5]. Convection cells elongated in
the axial direction attach around the equatorial outer boundary.
The cells propagates in the prograde direction. The convection
pattern is consistent with that of the benchmark paper, and the
values of the total kinetic energy coincide each other. As a result,
the model validity developed here was confirmed.

We will try to perform large-scale high-resolution numerical
simulations of Jovian atmospheric motions using this anelastic
rotating spherical convection model, and pursuit origin of

banded structures of the atmospheres of Jovian planets.
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