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The atmospheric environment data assimilation system using LETKF (Local Ensemble Transform Kalman Filter) developed
in JAMSTEC has been adopted using a horizontal resolution of 2.8° (300 km) as horizontal resolution. However, it is known
that atmospheric pollutants, especially NO,, show very large spatial distribution fluctuations around megacities. In this study, the
0.56°-resolution data assimilation experiments has been carried out and the assimilated dataset was evaluated using ground-based
independent monitoring networks for the precursors of pollutants. As a result, it was found that the assimilation greatly improves the

surface concentration especially in New York and in Hong Kong.

Keywords: data assimilation, chemical transport model, global scale, air pollution, megacities

1. Objective of this study stratospheric ozone adjustments and surface NO,, CO, and
Tropospheric ozone and its major precursors (NO, and lightning NO, source corrections. The 0.56°-resolution data
CO) are important for human health, ecosystems, and climate. assimilation increased the global total surface NO, emission
The combined use of satellite measurements of ozone and its by 35% compared to a prior emission (HTAP_v2.2, GFED4s,
precursors using advanced data assimilation technique such as and GEIA inventories). Large emission increments were found
ensemble Kalman filter is capable to provide comprehensive at megacities and biomass burning hotspots. Detailed spatial
constraints on global tropospheric chemistry system (inness distributions of the estimated surface NO, emissions differed
et al., 2015 [1]; Miyazaki et al., 2015[2]). In this study, a significantly between 0.56° and 2.8° resolutions. These results
0.56°-resolution global data assimilation system is developed suggest that the potentials of using a 0.56°-resolution data
towards the use of future satellite measurements at high spatial assimilation for studying tropospheric chemistry on scales from
resolution such as TROPOMI and geostationary satellites. megacity to global.
We demonstrate the performance of a 0.56°-resolution data
assimilation of multiple chemical species (ozone, NO,, CO, 2. Results
HNO,, and SO,) from multiple satellite sensors (OMI, GOME- The treatment of satellite measurements in the global data
2, SCTAMACHY, TES, MOPITT, and MLS) for concentration assimilation has been reevaluated in advance to conducting a
analyses and emission estimations. After a data assimilation 0.56°-resolution global data assimilation. In the most global
in April 2008, the global root mean square error (RMSE) of  applications of data assimilation for pollutants, the spatial
tropospheric NO, column compared to OMI was reduced by resolution of the model (~300 km) is coarser than that of
56%. The global RMSE against OMI was smaller by 56% in the the satellite retrievals (10~80 km). Differences between the
data assimilation at 0.56° resolution than at 2.8° resolution. The horizontal resolution of satellite retrievals and model grid cell
0.56°-resolution data assimilation showed better agreements in might cause a large difference of horizontal representativeness
surface NO, concentrations at the selected 43 cities compared (Fig. 1a). Therefore, an ensemble of satellite pixels called
to independent monitoring networks (AirBase, AQS, and “superobservation” for each model grid cell is applied for
other networks) than the model simulation. Agreements in the high-resolution data assimilation. Here, the observational
tropospheric ozone concentrations compared to ozonesonde, error for superobservations (c,,,.) can be calculated by

aircraft, and surface measurements were also improved. These using the measurement error (o ) and the horizontal

super,meas.

improvements were attributed to direct tropospheric and lower  representativeness error (o,

super,rep.

) as:
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_ 2 2 an inappropriate treatment of observational data during the
Osuper = \/ Tsuper meas T Osuperrep estimation of NOx emission.
In this study, the individual retrieval errors for satellite
data are applied as the measurement error. The horizontal 3. Summary and future works
representativeness errors are evaluated from the statistical A 0.56°-resolution global data assimilation system was
analysis of satellite data for each model grid cell because it is developed towards the use of future satellite measurements at
caused by the coverage of satellite pixels in a grid cell. Boersma high spatial resolution such as TROPOMI and geostationary
et al. (2016 [5]) found that the horizontal representativeness satellites. We demonstrated the performance of a
error for superobservations depends on the size of model grid 0.56°-resolution data assimilation of multiple chemical species
cell. Therefore, the horizontal representativeness error has been (ozone, NO,, CO, HNO;, and SO,) from multiple satellite
estimated for a 0.56°-resolution global data assimilation, and it sensors (OMI, GOME-2, SCIAMACHY, TES, MOPITT, and
is compared to that of 2.8°-resolution global data assimilation. MLS) for concentration analyses and emission estimations.
It is found that the horizontal representativeness error is larger After a data assimilation in April 2008, the global root mean
than that of coarser resolution assimilation if the horizontal square error (RMSE) of tropospheric NO, column compared
coverage of satellite pixel in a grid cell is same (Figure 1b). to OMI was reduced by 56%.The global RMSE against OMI
A short-term global data assimilation for 0.56°-resolution was smaller by 56% in the data assimilation at 0.56° resolution
has been conducted using the horizontal representativeness than at 2.8° resolution. The 0.56°-resolution data assimilation
error updated for high-resolution assimilation. The performance showed better agreements in surface NO, concentrations at
a 0.56°-resolution data assimilation is evaluated using NO, the selected 43 cities compared to independent monitoring
concentration observed by independent monitoring networks networks (AirBase, AQS, and other networks) than the model
in Asia, US, and the Europe for the latter part of assimilation simulation. Agreements in tropospheric ozone concentrations
period (Fig. 2). Agreements of the surface NO, concentration compared to ozonesonde, aircraft, and surface measurements
is improved by a 0.56°-resolution data assimilation especially were also improved. These improvements were attributed to
in New York and Hong Kong. The improvements is not direct tropospheric and lower stratospheric ozone adjustments
remarkable in Tokyo and London, and the possible cause of this and surface NO,, CO, and lightning NO, source corrections.
discrepancy seems to be an insufficient number of ensemble The 0.56°-resolution data assimilation increased the global total

member, an inadequate localization radius in assimilation, or surface NO, emission by 35% compared to a prior emission

(b) Estimated spatial

(a) Example of satellite retrievals (2008/5/6) representativeness error
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Fig. 1 (a) Tropospheric column number density of NO, from the satellite retrieval of OMI on 6 May 2008 around Tokyo (x10" molecules cm™). Red
and black square denotes a grid cell of 2.8°- and 0.56°-resolution model covering Tokyo metropolitan area, respectively. (b) Relative horizontal
representativeness errors as a function of the covered fraction of one model grid cell for a 2.8°- and a 0.56°- resolution global data asimilation.

Red and black line denotes 2.8° and 0.56°, respectively.
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Fig. 2 Daily-mean NO, concentration near the surface in London, New York, Hong Kong, and Tokyo from August 30 to May 7, 2008. Black, red, and
blue lines denotes observations at the ground-based monitoring networks, 0.56°-resolution data assimilation, and forward model, respectively.
Units are pg m” for London and Hong Kong, and ppbv for New York and Tokyo.
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(HTAP_v2.2, GFED4s, and GEIA inventories). Large emission
increments were found at megacities and biomass burning
hotspots. Detailed spatial distributions of the estimated surface
NO, emissions differed significantly between 0.56° and 2.8°
resolutions. These results suggest that the potentials of using
a 0.56°-resolution data assimilation for studying tropospheric

chemistry on scales from megacity to global.
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