地球表層における物質循環モデルの開発研究

課題責任者

滝川 雅之 海洋研究開発機構 地球環境部門 北極環境変動総合研究センター

著者

関谷 高志^{*1}, 滝川 雅之^{*2}, 宮崎 和幸^{*3}, 大越智 幸司 ^{*4}

^{*1}海洋研究開発機構 地球環境部門 地球表層システム研究センター, ^{*2}海洋研究開発機構 地球環境部門 **北** 極環境変動総合研究センター, ^{*3}NASA Jet Propulsion Laboratory, ^{*4}海洋研究開発機構 地球環境部門 環境変 動予測研究センター

昨年度に引き続き、海洋機構で開発している LETKF (Local Ensemble Transform Kalman Filter: 局所アンサンブ ル変換カルマンフィルタ)を用いた、複数成分の化学種を対象とした大気環境データ同化システムの改良を行った。 また高解像度大気環境同化実験を行い、光化学オキシダント前駆物質の一つである二酸化窒素(NO₂)の地表排出量 分布推定を行ったところ、メガシティ周辺などの大規模排出源周辺では既存の同化実験(2.8 度)に比較して15%程 度の減少がみられた。また高解像度化することにより海洋上の船舶起源エミッションについても地理的分布と整 合的な推定が可能になり、太平洋、大西洋などで5-7%の排出量推定値の減少がみられた。また短寿命気体に加え て、比較的大気における光化学的寿命の長いメタンを対象とした同化システムの改良も行い、初期的な成果を得 た。

キーワード:データ同化,化学輸送モデル,大気汚染,大気化学,炭素収支推定

研究の目的と意義

対流圏において二酸化窒素(NO2)は光化学反応を介し て、光化学スモッグの主原因であるオゾン(03)、および PM2.5 の主成分のひとつである硝酸塩エアロゾルを生成 する。これらの物質は、人体に有害であると同時に、地球 の放射収支に影響し気候変動に寄与すると考えられてい る。これらの大気汚染物質について、化学輸送モデルを用 いた予報・予測が数多く行われてきており、その結果は社 会においても活用されている。しかしながら、排出量デー タを含む、化学輸送モデルのシミュレーション結果の不 確実性は依然として大きいのが現状である。そこで近年、 LETKF や4 次元変分法などの高度なデータ同化技術を用 いて、観測情報を化学輸送モデルに取り込み、大気汚染物 質の濃度分布や排出量を推定する取り組みが行われつつ ある[1,2]。海洋研究開発機構において開発されている LETKF を用いた大気環境データ同化システムは、複数の衛 星測器からの多種類の大気汚染物質の観測を同時に同化 しており、全球の対流圏光化学システムを最適化するこ とで、濃度分布、排出量の高精度な推定を可能としている [2,3]。その一方で、データ同化システムの水平解像度は 約2.8 度(300km)と気候影響評価を対象とした全球化学輸 送モデルの典型的な解像度を採用している。しかしなが ら、大気汚染物質、特にNO2は大気中における光化学的寿 命が数時間程度と非常に短いことから、大都市近傍など において非常に大きな空間分布変動を示すことが知られ ている。昨年度に日本、アメリカ、欧州などにおける地表 観測ネットワーク等との比較検証を行い、高解像度化に より大気中濃度の推定誤差が 33-75%程度減少することが 確認されたが、本年度はそれに引き続き、地表排出量分布 について検証を行った。

2. 実験設定

実験設定についてはほぼ昨年度の設定を踏襲した。具 体的には、予報モデルとして MIROC-AGCM をベースとした CHASER V4.0 を使用した [4,5]。水平解像度としては T42 (およそ 2.8 度), T106(およそ 1.1 度), および T213(お よそ 0.56 度)を使用した。鉛直層数は 32 層で、モデル上 端はおよそ高度40kmである。化学種として92種類、化学 反応として 262 種類考慮している。上部境界条件として、 成層圏化学輸送モデル[6,7]の結果を用いている。CHASER V4.0 はオンラインモデルであり、各タイムステップ(T42 では5-20分, T106では2-8分, T106では1-4分)での気 象場を計算しているが、観測結果との比較にあたり、当該 観測期間における ERA-Interim の6時間毎の再解析気象 場へのナッジングを行っている。ナッジングの時定数は、 気温については5日、水平風について0.7日とした。また 積雲対流スキームについては解像度ごとに最適化を実施 した。地表放出量の先験情報として、人為起源エミッショ ンとして HTAP_v2.2 [8] を、森林火災エミッションとし て GFED version 4.1s [9] を、土壌エミッションとして GEIA [10] をそれぞれ使用した。またエミッションの対 象年としては 2008 年としている。NOx の土壌起源エミッ ションについては日変化も考慮している [11]。 雷 NOx エ ミッションについてはモデル内でタイムステップごとに 計算される対流性雲の雲頂高度から推定している [12]。

多成分データ同化手法については局所アンサンブル カルマンフィルタ [13] を元にしている。同化に用いる 観測データとして、OMI, GOME-2, SCIAMACHY による NO₂鉛 直カラム量、TES による対流圏オゾン分布、MLS によるオ ゾンおよび HNO3 分布、MOPITT version 7 level2 による CO 鉛直カラム量、OMI による SO₂ 接地境界層カラム量 (OMSO2 version 3)を使用した。

3. 結果

本同化実験で得られた、全球の NO2 地表排出量分布の解 析値などを図1に示す。既存インベントリを組み合わせ た先験情報と解析値との差(図1右上)は、大気汚染およ び森林火災が顕著な地域において、とくに明瞭な変化が 見られた。先験情報からの増加(平均58%)は、とくに土 壌起源エミッションが多い地域で卓越していた。具体的 にはスペイン、トルコ、アメリカ中西部、カザフスタン、 およびサヘル(サハラ砂漠南縁部)などが該当する。各モ デルグリッドにおいて、土壌起源エミッションが全排出 量に占める比率が先験値と解析値で同じであったと仮定 すると、解析値における土壌起源エミッションの総量は 先験情報と比較して17%増加し、10.2 TgN/年と推定され た。これは、先行研究の10.7 TgN/年 [14] および12.6 Tg/年[15]と比較するとやや低い推定結果となった。

先験情報からの差異について、地域ごとにより詳しく 表したものを図2に示す。欧州においては北側で減少(北 緯46度以北で平均15%)する一方、南欧では増加(46度以 南で平均 20%) していた。欧州の都市域においては 30%以 上の顕著な減少がみられたが、一方で南欧の郊外域など

人為起源排出量の小さな地域では増加が見られたが、こ れは先述のように先験情報における土壌起源エミッショ ンが過小評価しているものと考えられ、先行研究[16]な どと整合的であった。解析値における欧州の船舶起源エ ミッションは0.77 TgN/年であり、先験情報から33%増加 した。アメリカ東部では先験情報からの減少(西経 95 度 以東で平均 28%)が見られた。アメリカ西部では先述のよ うに土壌起源エミッションの過小評価に由来すると思わ れる正のインクリメントが見られるが、都市域では顕著 な負のインクリメントが見られた。東アジアでは中国、韓 国、および日本の国ごとの NOx 排出量推定値は先験情報 と比較して、それぞれ 22%, 20%および 24%の減少となっ た。他の地域同様、内モンゴル北部および黒龍江省などの 遠隔地で増加する一方、深セン、釜山および大阪を除く大 都市域で増加傾向が見られた。本研究における中国起源 エミッションは7.5 TgN/年であったが、これは衛星等を 用いたトップダウン手法による先行研究 (DECSO, http://www.globemission.eu/)とも整合的であった。イ ンドではとくに南部で減少(北緯18度以北で平均31%)が、 北部で増加(北緯 18 度以北で平均 15%)がそれぞれ見られ た。また、都市域および石炭火力発電所周辺での負のイン

図 1 : (左上) 水平解像度 0.56 度の全球同化システムを用いて推定された NOx 排出量推定値分布。解析対象期間は 2008年6月29日から7月21日。(右上)解析インクリメント(排出量分布における先験情報と解析値との間の差異)。 (左下) 水平解像度による解析値の差異。水平解像度1.1度と0.56度の同化実験の間の差異。(右下) 同じく水平解像 度2.8度と0.56度の同化実験の間の差異。

クリメントが顕著に見られた。

水平解像度が解析値に与える影響について精査したと ころ、水平解像度 0.56 度での全球放出量解析値は 51.5TgN/年であった。これは、水平解像度 2.8 度および 1.1度での解析値よりも8-9%程度小さかった。とくに、欧 州や北米、中国、インド、南アフリカなどの汚染域での放 出量は2-26%程度減少した。大発生源の近傍では高解像度 化することにより小さめの解析値を示す一方で、あまり 大きくない発生源の周辺では北太平洋や大西洋などでの 船舶起源エミッションが顕著な地域を除き高解像度化に より 5-7%程度減少する傾向にあった。オゾンや一酸化炭 素など、複数の化学種の大気中濃度について観測値に基 づき修正したことによる HOx-NOx 化学反応フィードバッ クの影響が解像度によって異なることなどから、下部対 流圏における OH ラジカル濃度は高解像度化することによ って減少しており、放出量推定にも影響を与えているも のと推察された。

4. まとめ

高解像度(0.56 度)での大気環境同化実験を実施し、光 化学オキシダント前駆物質の一つである二酸化窒素(NO₂) の地表排出量分布推定を行った。その結果、メガシティ周 辺などの大規模排出源周辺では既存の同化実験(2.8 度) に比較して15%程度の減少がみられた。また高解像度化す ることにより海洋上の船舶起源エミッションについても 地理的分布と整合的な推定が可能になり、太平洋、大西洋 などで5-7%の排出量推定値の減少がみられた。今後は TROPOMIをはじめとする高解像度周回衛星や先日打ち上 げられた GEMS などの静止衛星などの先進的な観測データ を活用し、より高精度な観測-モデル統融合を進めていく 予定である。

謝辞

本研究は文部科学省フラグシップ 2020(ポスト「京」) 重点課題 4「観測ビッグデータを活用した気象と地球環 境の予測の高度化」のおよび環境省の地球環境研究総合 推進費(S-12)の支援を受けた。また本研究の成果の一部 は NASA ジェット推進研究所において実施された。OMI, GOME-2, SCHIAMACHY による NO₂ カラム量については QA4ECV プロジェクトの成果に基づく。

文献

図 2: 図1右上と同様。ただし地域別に拡大したもの。

- [1] Inness, A., Blechschmidt, A.-M., Bouarar, I., Chabrillat, S., Crepulja, M., Engelen, R. J., Eskes, H., Flemming, J., Gaudel, A., Hendrick, F., Huijnen, V., Jones, L., Kapsomenakis, J., Katragkou, E., Keppens, A., Langerock, B., de Mazière, M., Melas, D., Parrington, M., Peuch, V. H., Razinger, M., Richter, A., Schultz, M. G., Suttie, M., Thouret, V., Vrekoussis, M., Wagner, A., and Zerefos, С., "Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS", Atmos. Chem. Phys., 15, 5275-5303, 2015.
- [2] Miyazaki, K., Eskes, H. J., and Sudo, K., "A tropospheric chemistry reanalysis for the years 2005-2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data", Atmos. Chem. Phys., 15, 8315-8348, doi:10.5194/acp-15-8315-2015, 2015.
- [3] Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y., "Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation", Atmos. Chem. Phys., 17, 807-837, doi:10.5194/acp-17-807-2017, 2017.
- [4] Sudo, K., Takahashi, M., Kurokawa, J., and Akimoto, H., "CHASER: A global chemical model of the troposphere 1. Model description", J. Geophys. Res., 107, ACH 7-1-ACH 7-20, 2002.
- [5] Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M., "MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments", Geosci. Model Dev., 4, 845-872, 2011.
- [6] Akiyoshi, H., Zhou, L. B., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T.: "A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980-2004 under the CCMVal scenarios", J. Geophys. Res., 114, 2009.
- [7] Akiyoshi, H., Nakamura, T., Miyasaka, T., Shiotani, M., and Suzuki, M.: "A nudged chemistry-climate model simulation of chemical con- stituent distribution at northern highlatitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming", J. Geophys. Res., 121, 1361-1380, 2015JD023334, 2016.

- [8] Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating. Τ., Zhang, Q., Kurokawa, Τ. . Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: "HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution", Atmos. Chem. Phys., 15, 11 411-11 432, 2015.
- [9] van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: "Global fire emissions estimates during 1997-2016", Earth Syst. Sci. Data, 9, 697-720, 2017.
- [10] Yienger, J. J. and Levy, H.: "Empirical model of global soil-biogenic NOx emissions", J. Geophys. Res., 100, 11 447-11 464, 1995.
- [11] Miyazaki, K., Eskes, H. J., and Sudo, K.: "Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns", Atmos. Chem. Phys., 12, 2263-2288, 2012.
- [12] Price, C. and Rind, D.: "A simple lightning parameterization for calculating global lightning distributions", J. Geophys. Res., 97, 9919-9933, 1992.
- [13] Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: "Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter", Physica D, 230, 112-126, 2007.
- [14] Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russel, A. R., Valin, L. C., and Cohen, R.C., "Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space-based constraints", Atmos. Chem. Phys, 12(6), 7779-7795, 2012.
- [15] Vinken, G.C.M., Boersma, K.F., van Donkelaar, A., and Zhang, L., "Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satelite NO2 observations", Atmos. Chem. Phys., 14(3), 1353-1369, 2014.
- [16] Vinken, G.C.M., Boersma, K.F., Maasakkers, J.D., Adon, M., and Martin, R.V., "Worldwide biogenic soil NOx emissions inferred from OMI NO₂ observations", Atmos. Chem. Phys., 14, 10363-10381, 2014.

Environmental Geochemical Cycle Modelling Research

Project Representative

Masayuki Takigawa Institute of Arctic Climate and Environment Research, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology

Authors

Takashi Sekiya *1, Masayuki Takigawa *2, Kazuyki Miyazaki *3, Koji Ogochi *4 *1Earth Surface System Research Center, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, *2 Institute of Arctic Climate and Environment Research, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology*3 Jet Propulsion Laboratory, California Institute of Technology, *4 Research Center for Environmental Modeling and Application, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology

Global chemical data assimilation at 0.56° resolution for multi-constituent satellite retrievals of O_3 , NO_2 , CO, HNO_3 , and SO_2 from OMI, GOME-2, SCIAMACHY, TES, MOPITT, and MLS using an ensemble Kalman filter technique was applied to simultaneously optimize ozone precursor emissions and concentrations of various species. The estimated global total NOx emission over medium and strong source areas were smaller by 15% at 0.56° resolution than at 2.8° resolution associated with resolving small-scale transport and chemistry processes, while 2–26% smaller emissions were found for regional total emissions over Europe, the United States, China, India, and South Africa, with larger differences over megacities such as Los Angeles (–41%). The estimated ship emissions were 5–7% smaller at 0.56° resolution over the Pacific and Atlantic.

Keywords : Data assimilation, chemical transport model, air pollution, atmospheric chemistry, carbon budget

1. Introduction

Nitrogen oxides (NOx) are a main precursor of tropospheric ozone and nitrate aerosols, which are important for air quality and climate change. Wet and dry deposition of nitrogen compounds affects the productivity and diversity of terrestrial and marine ecosystems on a global scale. NOx also affects oxidizing capacities through O3-HOx-NOx chemistry, which determines the lifetime of air pollutants and long-lived greenhouse gases, such as methane. The major anthropogenic sources of NOx are ground transportation and power generation, which account for more than half of the total global anthropogenic emissions. NOx is also emitted from natural sources including biomass burning, microbial activity in soil, and lightning. However, bottom-up inventories of anthropogenic and natural emissions of NOx contain large uncertainties, reflecting inaccurate emission factors and activity rates, e.g., traffic rush hours and winter building heating, and incomplete knowledge of biomass burning emission factors for various situations.

In this study, we present the results of global data assimilation for multi-constituent satellite retrievals (O₃, NO₂, CO, HNO₃, and SO₂) from multiple sensors (OMI, GOME-2, SCIAMACHY, TES, MOPITT, and MLS) at a resolution of 0.56° using an ensemble Kalman filter (EnKF) approach and a high-resolution global CTM. Data assimilation results at three horizontal resolutions (0.56, 1.1, and 2.8°) are compared with a priori emissions to demonstrate the impacts of horizontal resolution on chemical data assimilation.

2. Methodology

The data assimilation system used CHASER V4.0 as the forecast model. We employed a horizontal resolution of T42 (i.e.,

2.8°), T106 (i.e., 1.1°), and T213 (i.e., 0.56°) with 32 vertical layers from the surface to an altitude of approximately 40 km. CHASER simulates spatial and temporal variations in chemical species in the troposphere and stratosphere, by calculating tracer transport (advection, cumulus convection, and vertical diffusion), emissions, dry and wet deposition, and chemical processes (92 species, 262 reactions) including the O₃-HOx-NOX-CH₄-CO system with non-methane volatile organic compounds oxidation. Stratospheric chemistry (i.e., halogen chemistry) was also incorporated based on the Center for Climate System Research (CCSR)/National Institute for Environmental Studies (NIES) chemistry climate model.

The meteorological fields were calculated using the MIROC-AGCM atmospheric general circulation model. at every time step (i.e., 1–4 min at 0.56° , 2–8 min at 1.1° , and 5–20 min at 2.8° resolution). To reproduce past meteorological fields and calculate short-term variability, the simulated temperature and horizontal wind fields were nudged to the 6-hourly ERA-Interim reanalysis data with a relaxation time of 5 days for temperature and 0.7 days for horizontal winds. The reanalysis data (at a resolution of 0.75°) were linearly interpolated to each model grid. We used an optimized setting for the cumulus convection parameterization (prognostic Arakawa–Schubert scheme) at each resolution based on sensitivity calculations.

We used the multi-constituent data assimilation system [1,2]. The data assimilation technique employed is a local ensemble transform Kalman filter. To calculate chemical data assimilation at a high resolution, we tuned the data assimilation code (e.g., vectorization) with increasing computational file input/output efficiency (in total, 4.6 times faster than our system without tuning for our supercomputer system).

3. Results

The developed system provides globally-consistent information on ozone precursor emissions on a megacity scale. As summarized in Figure 1, the regional a posteriori emissions differed considerably from the a priori emissions over polluted and biomass burning regions. Strong positive increments (by 58% on average) were found over regions where soil emissions are dominant (> 50%), such as over Spain, Turkey, the Midwest United States, Kazakhstan, and the Sahel region. By assuming that a ratio of the soil emissions to total emissions in the a priori emissions maintains in the a posteriori emissions at each grid cell, the global amount of the a posteriori soil emissions increased by 17% (to 10.2 Tg N yr-1), which was slightly smaller than the estimates of annual total soil emissions reported by Hudman et al. (2012) (10.7 Tg N yr-1) and Vinken et al. (2014) (12.6 Tg N yr-1).

Acknowledgement

This work was supported by the Post-K computer

project Priority Issue 4 - Advancement of meteorological and global environmental predictions utilizing observational big data and by the Global Environment Research Fund (S-12) of the Ministry of the Environment (MOE). A part of the research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

- Miyazaki, K., Eskes, H. J., and Sudo, K., "A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data", Atmos. Chem. Phys., 15, 8315–8348, 2015.
- [2] Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y., "Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation", Atmos. Chem. Phys., 17, 807–837, 2017.

Figure 1: Global distribution of a posteriori surface NOx emission from 0.56° -resolution data assimilation with 64 ensembles (upper left) and the difference between the a posteriori and a priori emissions (upper right) during June 29 to July 21, 2008. The differences in the a posteriori emissions from the data assimilation with 32 ensembles between 0.56 and 1.1° resolutions (lower left) and between 0.56 and 2.8° resolutions (lower right) are also shown. The unit is $x10^{-11}$ kgN m⁻² s⁻¹.