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We have developed a parallelized ocean circulation model based on the Princeton Ocean Model with generalized
coordinate of sigma. The model is the Third generation of the ocean circulation model used for Japan
Coastal Ocean Predictability Experiment (JCOPE-T). Horizontal two-dimensional region decomposition is
applied for parallel computing with the Massage Passing Interface. The numerical schemes are designed
for enabling the concurrent simulation of both geostrophic and ageostrophic ocean currents driven by the
atmospheric, tidal, and river discharge forcing components. Additional parameterization schemes are newly
included for the non-tidal simulation in basin scales. Several modifications of the calculation code for
increasing efficiency in the vector computation demonstrate reduction of the elapsed time in approximately

50% on the Earth Simulator.
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1. Introduction

Japan Coastal Ocean Predictability Experiment (JCOPE)
aims at investigation of the predictability in the ocean current
variations and applications of the ocean current simulation
results for both scientific and social needs. The numerical
models used for the simulations are based on the Princeton
Ocean Model with generalized coordinate of sigma [1].
Recently we have reconstructed the model using the Message
Passing Interface (MPI). The reconstructed model is the third
generation of the JCOPE model (JCOPE-T). This document
describes the numerical schemes and the code structure of
JCOPE-T, and improvements in computational efficiency on
the third generation of the Earth Simulator (ES3).

2. Numerical schemes

The model is a variant, the primitive equation, of the
Navier-Stokes equation with the Boussinesq and hydrostatic
approximations [1]. The basic equations consist of the
momentum  equations, volume conservation equation,
transport equations of temperature and salinity, and turbulence
kinetic energy equation. The coordinate system of the
equations is described horizontally in the longitude-latitude
coordinate, and vertically in the generalized sigma coordinate.
Splitting the momentum equations into the barotropic and
baroclinic modes is adopted for the efficient calculation. The
horizontal viscosity and diffusion are represented by the
biharmonic operators with the Smagorinsky-type coefficients.

We include the lateral horizontal diffusion along not a
sigma-level but along a z-level to exclude erroneous
temperature and salinity states near the steep bottom
topography. The vertical viscosity and diffusion are
represented by the harmonic operator with the coefficients
obtained from the turbulent closure model derived by Mellor-
Yamada- Nakanishi- Niino-Furuichi [2].

Time-stepping is discretized by the Leapfrog scheme with
the Asselin-type temporal smoothing. The momentum
advection and viscosity are discretized using the second order
difference scheme. The horizontal advection of the tracers is
represented by the flux-correction scheme for reducing small
scale noises [3]. Since the use of the sigma coordinate could
result in the baroclinic pressure gradient errors in cases of
steep bottom topography, the baroclinic pressure gradient is
carefully discretized using the fourth-order pressure gradient
schemes [4]. The wvertical viscosity and diffusion are
represented by the harmonic operator with the implicit
discretization for allowing the relatively large amplitude of the
viscosity and diffusion coefficients in case of the enhanced
mixing represented by the MYNNF turbulent closure model.
The lateral boundary conditions can be supplied from outside
models in case of the open boundaries (one-way nesting).

We have rewritten the original Fortran 77 code of the
Princeton Ocean Model with generalized coordinate of sigma
[1] in Fortran 90-2003 format, and added the Message
Passing Interface (MPI) functions and modules. Horizontal
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two-dimensional domain decomposition is applied for parallel
computing with MPI.  Combinations of the domain
decomposition can be selected arbitrarily. Input and output
(I/O) operations are performed by reading/writing the binary
files with the stream type allowing large file size. The domain
decomposition of the input/output files for the parallel
computation is internally conducted in the code using
Fortran-MP1 based subroutines/functions.

3. Coastal version of JCOPE-T

JCOPE-T was originally developed for regional coastal
simulations with inclusion of the tidal currents [5]. To
represent the tidal current effects, the model puts volume
fluxes and sea level anomalies of 11 tidal constituents at
lateral boundaries. Also, the surface pressure gradient includes
the equilibrium gradient induced by 25 tidal potential
constituents. Information of the tidal components is provided
by a 1/12° version model of Oregon State University Tidal
Inversion Software (OTIS) [6].

The bottom friction parameterization is represented as
Km0 UI0Z],=Col(Up Vp)lUp,  KndVI0Z[=Col(Up Ve)Vy (1)
\where K, (U,Vy), C, are the viscosity coefficient, the
current velocity components above the bottom (b), and the
empirical bottom friction coefficient [7], respectively, and in
the case of including the tidal currents, the external mode
momentum equation additionally include the friction term as

Cel(UeVe)lUe,  Cel(Ue Vo) Ve @
,where C, and (U,,V,) are the empirical external mode ()
friction coefficient and external mode (vertical mean) velocity
components, respectively. The additional dissipation term (2)
effectively stabilizes the unrealistic velocity fluctuation caused
by the tidal forcing especially around the shallower shelf
regions.

The inclusion of the tidal currents frequently causes the
reflection of the internal tidal waves from the open boundaries
of the regional models. To mitigate the refection of the waves,
we apply the horizontal smoothing (a simple three points
smoothing) of temperature, salinity and internal velocity
components near the open boundaries.

The fresh water discharge is represented as water volume
fluxes at river mouth grids with monthly mean climatological
discharge volumes. The atmospheric data required for
calculation of the bulk formulae are obtained from several
data sources including the Global Forecast System (GFS) and
Climate Forecast System (CFS) of National Centers for
Environmental Prediction (NCEP), and the MesoScale Model
of Japan Meteorological Agency (JMA). The code directly
reads the GRIB format data provided from the original
atmospheric data providers.

4. Open ocean (non-tidal current) version of
JCOPE-T

- Earth Simulator JAMSTEC Proposed Project -

In this fiscal year, we have added a non-tidal option into the
JCOPE-T code for basin-global scales simulations. A mainly
targeted Northwest Pacific region covers 105° -62° N,
108° -180° E, as same as those simulated by JCOPE2M [8].
The Northwest Pacific model with a spatial grid of 1/12° and
46 vertical levels was embedded with one-way nesting in a
low-resolution model with a spatial grid of approximately
1/4° and 21 sigma levels, covering the almost entire Pacific
region (30° S-62° N, 100° E-90° W). Lateral boundary
condition of the low-resolution model is monthly
climatological temperature and salinity with zero velocity.

This version does not include the tidal currents, and
excludes the additional bottom friction terms (2). We find that
the additional inclusion of the dissipation term (2) results in
unrealistically weakened geostrophic ocean currents over the
bottom slopes in case of such non-tidal current condition. To
represent the tidal mixing effect, we have enhanced the
background turbulence as vertical eddy diffusivity and
viscosity where the tidal current is strong, e. g. East China Sea
[9].

The fresh water flux caused by the river discharge is
basically represented as the enhanced precipitation along the
coasts caused by the coastal precipitation over a strip of land
80 km wide, which represents the freshwater flux from small
rivers [10]. The fresh water volume flux from the only two
continental scale rivers: Changjiang and Amur, is included in
the code. The hourly atmospheric data provided from
NCEP-CFS are applied the calculation of the surface
momentum, heat, and virtual salt fluxes. The heat and virtual
salt flux terms include the correction terms representing
relaxation to the monthly climatology of temperature and
salinity, respectively. In both the Okhotsk and Bering Seas,
temperature and salinity are relaxed to the monthly
climatology with a restoring time scale of 30 days to improve
water mass property in the Mixed Water Region.

5. Preliminary runs for code optimization

The low-resolution model was spun-up for a 35-year
period from January 1986 to December 2020 by the
NCEP-CFS forcing from an initial condition of no motion
with the annual-mean temperature and salinity fields created
from the climatology. The high-resolution model was also
run using the NCEP-CFS forcing with one-way nesting by
the low-resolution model outputs from the same initial
condition.

The low-resolution model with an array size of 543 x 281 x
21 was compiled by Intel Fortran combined with Open MPI,
and calculated on 20 numbers of Intel Xeon processors by
applying 4 x 5 domain decomposition. The external and
internal mode time steps were 24 and 960 seconds,
respectively. The elapsed time required for 1-day calculation
was 24 seconds.
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The high-resolution model with an array size of 866 x 620
X 47 was compiled by FORTRAN90/SX combined with
MPI/SX, and calculated on 8 nodes of ES3 (NEC SX-ACE).
The domain decomposition of 4 x 8 was applied by
considering 4 cores built-in 1 node of the SX-ACE
architecture. The external and internal mode time steps were
8 and 240 seconds, respectively. The elapsed time required
for 1-day calculation was 84 seconds after some code
modifications (later described) for improvement in the
computational efficiency.

We found that the inline expansion by adding a compiler
option “-pi,auto’ improved computational efficiency by
18%-33%, depending on the length of the simulation period.
Also, improvement in vectorization rate from 94.6% to 96.8%
by changing the order of some DO loops and by adding
working arrays in some subroutines effectively improved the
efficiency by 44%.

We will further continue the optimization in the
computational efficiency of the same code at the newly
introduced Earth Simulator in 2021 (ES4). We will utilize the
improved computational efficiency for two directions:
ensemble and downscaling. The ensemble simulation is
performed using relatively coarser grid models like the
Northwest Pacific model developed by the present study, and
required for estimation of the uncertainty in the ocean
prediction [11], improvements in data assimilation [12], and
detection of forecast sensitivity [13]. The downscaling is
necessary for answering an important open question in
physical oceanography: open ocean and coastal currents
interactions.
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