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Using the cloud-resolving model CReSS, we performed high-resolution simulations of supertyphoons observed by aircraft
and conducted a number of sensitivity experiments on physical processes. Results are presented here for Supertyphoon Lan
observed in October 2017. Sensitivity experiments examined ocean processes, initial spin-up, terminal velocity of cloud
particles, radiative processes, and turbulent processes. For the oceanic processes, an appropriate representation of the typhoon-
induced sea surface temperature drop is important for accurate prediction of typhoon intensity. For the terminal velocity of
cloud particles, the lifetime-minimum central pressure was lower when the terminal velocity was higher. Experiments on
radiative processes indicated that this was due to cloud radiation, with longwave radiation in particular having a larger effect.
For turbulent processes, a smaller diffusion coefficient and a resulted thinner and stronger inflow to the typhoon in the

atmospheric boundary layer resulted in more rapid development.

Keywords: Supertyphoon, Aircraft observation, Cloud-resolving model, High resolution simulation

1. Introduction

Because typhoons, the most powerful tropical cyclones on
earth, are generated and develop over the ocean, numerical model
simulations are indispensable for their study. Since typhoons are
composed of clouds such as well-developed cumulonimbus
clouds, a numerical model that resolves clouds is necessary for
their simulation. Verification by observation of observed
typhoons is essential for typhoon simulation, but there is little
observational data on the warm core and central pressure of
typhoons. Since 2017, the T-PARCII (Tropical cyclone- Pacific
Asian Research Campaign for Improvement of Intensity
estimations/forecasts) project has been conducting aircraft
observations of typhoons and has successfully observed the inner
core of Supertyphoon Lan in 2017 and Supertyphoon Trami in
2018 and the warm core inside the eye by dropsonde from high
altitude. These data can now be used as validation data for very
strong typhoons. Using these observation data, the objective of
this study is to simulate intense typhoons, including those
observed by aircraft, and to elucidate the structure and
strengthening process of typhoons.

In this study, the cloud-resolving model CReSS was used to
conduct experiments for several typhoons, and here we
summarize the results of various experiments for Typhoon Lan
(2017).

2. Numerical model and experimental setup

The cloud-resolving model used in this study is the Cloud
Resolving Storm Simulator (CReSS3.4.3m; Tsuboki and
Sakakibara 2002 [1]). The CReSS model is a three-dimensional,
regional, compressible non-hydrostatic model. The CReSS
model uses a terrain-following coordinate system in the vertical
and calculates the three-dimensional wind velocity components,

pressure perturbation, potential temperature perturbation,
turbulent kinetic energy, and the mixing ratios of water vapor,
cloud water, rain, cloud ice, snow, and graupel. The CReSS
model does not use cumulus parameterization. The short- and
long-waves radiative heating/cooling in the model are calculated
by the Rapid Radiative Transfer Model (RRTM).

The computational domain is approximately 40° in longitude
and 35° in latitude, with a height of 24 km at the bottom of the
upper sponge layer. The horizontal grid spacing is approximately
2 km in both latitude and longitude. The vertical grid is finer in
the lower layers using stretching technique, with a grid spacing
of 100 m at the lowest level and 80 vertical layers. The IMA
(Japan Meteorological Agency) global objective analysis was
used for initial and boundary values.

3. Results

The control experiment was performed for 5 days with an
initial value of OOUTC on October 18, 2017. The simulated
typhoon track almost agrees to the JMA Best Track (JMA-BT),
reproducing a supertyphoon with a center near 22°N. The central
pressure is also almost the same as observations at around 930
hPa. Although the initial development is somewhat earlier and
the time of the minimum central pressure is delayed from that of
JMA-BT, the minimum central pressure and maximum surface
wind speed are almost the same as those of JMA-BT, and the
central pressure is almost the same as those obtained from aircraft
observations. From these facts, sensitivity experiments can be
performed using this experiment as a standard.

Typhoon intensity is highly dependent on the ocean model
connected to the atmospheric model. Figure 1 shows the results
of experiments with 0.5 m intervals, 61 layers (black line), 1 m
intervals (red line), and the fixed sea surface temperature (light

-3-5



Annual Report of the Earth Simulator April 2021 - March 2022

blue). The light blue line, without cooling by the typhoon, shows
significant overdevelopment, indicating the importance of the
ocean model to predict typhoon intensity. The red line has a lower
central pressure than the black line, indicating that the deeper the
ocean mixing layer, the greater the typhoon intensity. This is due
to the greater heat capacity of the oceans.
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Figure 1: Temporal variation of the central pressure of
the typhoon from the sensitivity experiments on the
ocean. Ocean mixing layers at 0.5 m intervals, 61 layers
(black line), at 1 m intervals (red line), and when sea
surface temperature is given by the data (light blue).

The terminal velocity of cloud particles of ice crystals and
cloud water is generally less than 10 cm/s, and their fall seems to
have little effect on typhoon intensity. However, the cirrus clouds
in the typhoon outflow layer affect the overall heat budget of the
typhoon through radiation, and furthermore affect its intensity.
Therefore, we investigated the sensitivity of typhoon intensity to
the terminal velocity of cloud particles.

Figure 2 compares the time evolution of the central pressure
for a fixed value of cloud particle terminal velocity: 0.1 mm/s is
for a nearly zero velocity, 10 cr/s is for a standard velocity, and
20 cm/s is for a velocity twice that of the standard terminal
velocity. If we focus on lifetime-maximum intensity, the lifetime
minimum central pressure is almost 15 hPa lower in the case of
falling ice crystals than in the case of almost no falling ice crystals
(the case of 0.1 mmy/s).

To show that this is due to an effect of radiation, Figure 3
compares the results for 0.1 mm/s and 10 cm/s when the radiation
process is switched off. In this case, the difference in central
pressure is significantly smaller, indicating that the radiative
process due to clouds affects the intensity of the typhoon. To
further investigate the effects of longwave and shortwave
radiation, we compared the results for no radiation process, only
longwave radiation, and with longwave and shortwave radiation
processes at a cloud particle terminal velocity of 10 cm/s. The
results shown in Figure 4 indicate that the minimum central
pressure is lower than in the cases with radiative processes. When
comparing longwave radiation only and with longwave and

shortwave radiation, the difference is not significant, indicating
that longwave radiation has a greater impact on typhoon intensity

than shortwave radiation.
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Figure 2: Temporal variation of central pressure for
cloud particles (ice crystals and cloud water) falling at
0.1 mm/s (black line), 10 cm/s (red line), and 20 cm/s
(green line).
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Figure 3: Temporal variation of central pressure for
cloud particles (ice crystals and cloud water) falling at
0.1 mm/s (black line) and 10 cm/s (red line) in the
absence of radiation.

The thickness and strength of the inflow to the typhoon center
in the atmospheric boundary layer strongly depend on the
turbulent processes in the boundary layer. Here, the effect of a
change of diffusion coefficient is investigated. The terminal
velocity of cloud particles was assumed to be 10 cm/s. The results
show a large difference in the development rate, with the smaller
diffusion coefficient showing more rapid development on the
October 19. This is due to the smaller diffusion coefficient, which
results in a smaller and stronger inflow thickness, and thus a more
developed eyewall cloud.
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Figure 4: Temporal variation of central pressure
without radiation (black line), with longwave radiation
only (red line), and with radiation (light blue) when the
cloud particles fall at 10 cm/s.





