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1. Introduction

Developments of permanent networks of ocean bottom
seismometers (OBSs) by the Japan Agency for Marine-Earth
Science and Technology (JAMSTEC) and the National
Research Institute for Earth Science and Disaster Resilience
(NIED) provide us with the opportunity to investigate seismic
activity near megathrust zones. Details of OBS networks were
summarized in Aoi et al. (2020)[1]. However, precise
estimations of source parameters for offshore events are still
challenging issues, even for the use of near-source OBSs. The
seismograms at OBSs could be complicated due to site
amplifications (e.g., Kubo et al. 2018[2]; Yabe et al. 2019[3])
and propagation path effects due to the thick sedimentary layer
(Takemura et al. 2020[4]).

In this report, we briefly review the preprint of Takemura et
al. (2023)[5]. In this preprint, we investigated propagation path
effects within a thick (~ Skm) sedimentary layer near the
Nankai Trough based on numerical simulations in a one-
dimensional (1D) velocity model.

2. Simulation method

Numerical simulations of seismic wave propagation were
conducted using the OpenSWPC (Maeda et al. 2017[6]). We
assumed the 1D P-wave velocity model of Nakano et al
(2013)[7]. Other physical parameters were employed from the
empirical laws of Brocher (2005[8], 2008[9]). This model
(referred to as “DONET1D”) includes thick (5 km) sedimentary
layers with S-wave velocities of 0.6-2 km/s. We also prepared
DONETID’, where the physical parameters of sedimentary
layers were replaced with those of the crust. Comparing
simulation results between DONET1D and DONETI1D’
provides us with propagation path effects of thick sedimentary
layers.

We simulated seismograms from a shallow tectonic tremor
and an intraslab earthquake. The former is the low-angle thrust
mechanism on the plate boundary, and the latter is normal
faulting within the oceanic mantle. The depths of a shallow
tectonic tremor and an intraslab earthquake are 8.07 and 40 km,

respectively. A simple short-duration pulse was assumed as the
source time function of all simulations to discuss path effects.

3. Simulation results

Figure 1 shows the simulated wavefield of a shallow tectonic
tremor in DONET1D’ and DONET1D. In DONET1D’ (Fig. 1a),
we confirmed P, S, and sP converted signals. Multiple reflections
from the sea surface were also clearly illustrated. On the other
hand, a complicated wavefield due to multiple reflections within
sedimentary layers was recognized in DONET1D (Fig. 1b).

Figure 2 shows radial-component simulated seismograms of a
shallow tectonic tremor at epicentral distances of 20 and 40 km.
A band-pass filter with frequencies of 2-8 Hz was applied to each
trace. This frequency band is typically used in the analysis of
tectonic tremors. In DONET1D’, P, S, sP and multiple reflections
from the sea surface were identified. By introducing thick
sedimentary layers (DONET1D), these signals became unclear,
and reflections from the basement of sedimentary layers (the
plate boundary) were clearly observed. As distance increases,
seismic energy is trapped within thick sedimentary layers due to
multiple reflections from the basement and ocean bottom.
Consequently, strong envelope broadening was confirmed in
DONETI1D (Takemura et al. 2020[4]).

We measured source radiated energy from simulated
waveforms. We calculated three-component square envelopes at
each station. Then, to measure the duration of the envelopes
stably, we applied a 5-s moving average to squared envelopes.
We measured the half-value widths of envelopes. Then, we
integrated squared envelopes within each half-value width. By
multiplying 2tVspR?, we obtained the source radiated energy of
simulated seismograms. S-wave velocity (Vs) of 3,500 m/s and
density (p) of 2,700 kg/m3 were assumed. R is hypocentral
distance. Finally, we calculated the ratio of source radiated
energies at each distance between DONET1D and DONET1D’.
This ratio represents amplifications of source radiated energy due
to thick sedimentary layers. Figure 3 shows source radiated
energy amplification for an intraslab earthquake and a shallow
tectonic tremor. Almost constant (~2) amplification was
observed in an intraslab case (Figure 3a). This result implies that
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Figure 1. Simulated wavefield of a shallow tectonic tremors in (a) DONET1D’ and (b) DONET1D.

site amplifications compared to rock sites are mostly controlled
by thin lower-velocity (Vs < 0.6 km/s) sediments just below
OBSs. On the other hand, distance-dependent amplification was
observed in a shallow tectonic tremor. Especially at distances of
5-20 km, approximately one-order amplification was recognized.

4. Summary and future perspective

By using numerical simulations of seismic wave propagation
in various 1D models and sources, we investigated the
propagation-path effects of thick sedimentary layers near the
Nankai Trough on high-frequency seismic waves. Distance-
dependent amplifications due to thick sedimentary layers were
confirmed in a shallow tectonic tremor case, which is located just
below the basement of thick sedimentary layers.

Characteristics of shallow slow earthquakes and tectonic
setting of shallow plate boundary along the Nankai Trough are
summarized in a recent review paper (Takemura, Hamada et al.
2023[10]). However, detailed mechanisms of shallow slow
earthquakes are still an open question. To achieve a unified model
of shallow slow earthquakes, we should precisely estimate source
parameters of shallow slow earthquakes in the future.
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