粒子法シミュレーションを用いた高出力レーザによる宇宙レーザ加工 プロセスの最適化

課題責任者

川人 洋介

海洋研究開発機構 付加価値情報創生部門

著者

川人 洋介*1

*1海洋研究開発機構 付加価値情報創生部門

1. 序論

レーザは優れた指向性エネルギーである。この特徴に より、レーザは発明されてから現在に至るまで研究開発、 産業、娯楽など多くの分野、特に産業界において従来工法 と比べ生産性が高く加工精度が良いなどの特性から様々 な製造工程で利用されてきた。さらなる生産性の向上や レーザ適用範囲の拡大を目指しレーザの高輝度・大出力 化の開発が進められてきており、大出力化に伴いレーザ の適用分野は、溶接や切断から、従来の製造法とは異なる 付加価値製造(Additive Manufacturing)や極限環境下での 使用に耐える部材の加工にまで広がってきている。

例えば、大出力化に関しては 10 k W 以上の出力のレー ザがすでに開発されている。45 kW CO₂ レーザ、10 kW Nd:YAG レーザ、60 kW ダイオードレーザは、それぞれ 1994 年、1999 年、2022 年に開発され、特に注目されてい るファイバーレーザは 100 kW 出力が 2009 年に米国で、 2022 年に中国で開発された。現在、出力が数 kW 以上の 超高出力レーザと呼ばれるレーザが市販されている。

超高出力レーザの溶接や切断については、いくつかの 研究報告がある。溶接では、川人らが 100 kW ファイバー レーザを採用し、溶け込み深さ 70 mm のステンレス鋼の ビードオンプレート溶接に成功した[1]。切断では、 Goya らは、25 kW ファイバーレーザと 4000 L/min アシストガ スにより、原子力施設解体用の厚さ1.2 m の純粋なコンク リートを切断できると報告[2]した。

従来の製造法とは異なる AM に関しては、Zhao ら [3] や Khairallah ら[4]は、レーザ指向性によって生成される 高効率なレーザ吸収現象であるキーホールに焦点を当て、 キーホール発生の閾値とキーホール起因の欠陥発生メカ ニズムを実験的および数値的に明らかにした。また、藤田 らは、月の模擬砂をレーザ 3D プリンティング技術で焼 結・溶融させて層状に形成する月面基地の建設手法を開 発している[5]。

極限環境下での使用に耐える部材の加工に関しては、 Farries らは月面建設用の模擬玄武岩ブロックをレーザ溶 接するパイロット研究を実施した[6]。また、原子炉の廃炉 の為に Dodds らがファイバーレーザ切断中の放射性核種 分布に関するデータを提供した[7]。現在、福島第一原子力 発電所の廃炉作業では、新たに何も加えることなく現場 作業ができ、さらにロボット運用により効率的な遠隔技 術として、レーザ技術が注目されている。その技術のひと つにレーザ切断がある。しかし、これまでのレーザ切断で は、高圧の大量のアシストガスにより放射性物質を飛散 させる可能性があった。そこで、アシストガスを使用せず、 超高出力レーザによりメートル級のコンクリートを溶融 してガラス化させ、その脆化したコンクリートを人力程 度の比較的弱い物理衝撃で分離できる新たな切断工法を 開発中である。

本研究では、新たな切断工法の基盤プロセスである、超 高出力レーザによるメートル級コンクリートのガラス化 プロセスに注目し、粒子法シミュレーションを用いて、溶 融コンクリート内部のレーザ伝搬を数値的に明らかにす ることを目的とした。この知見から、地球上はもとより宇 宙空間でも適用可能な特長を生かした利用を想定する。

2. 計算手法

溶融コンクリート内部のレーザ伝搬を、フレネル方程 式を含む粒子法に従って評価した。粒子法は計算のため のメッシュを必要としないため、自由曲面のような形状 変化の大きい流体の計算に適している。現在、フレネル吸 収と多重反射等の光と物質との相互作用を考慮した、レ ーザ溶接に特化した新しい粒子法を開発中である。

支配方程式はナビエ・ストークス方程式で、流体に対す る外力として重力と表面張力を与えた。図1示すように、 1500 万個の粒子を1 mm 間隔で並べて1 m のサンプルを 作成し、各粒子の物性は、受入コンクリートの X 線 CT データに基づいてコンクリートの構成要素であるモルタ ルまたは骨材を決定し、表 1 に示す物性を与えた。それ ぞれの粒子は固体または液体の状態を持ち、吸収する熱 量に応じて温度が変化し、融点または沸点に達すると、潜 熱が消費され、相が変化する。

	Mortar	Aggregate	
Density, p(g·cm ⁻³)	2.052	2.7	
Atomic weight, M	46.08	60.09	
Surface tension, σ (mN · m ⁻¹)	500	500	
Kinematic viscosity, ν (m ² ·s ⁻¹)	0.00005	0.00005	
Thermal conductivity, λ (W·m ⁻¹ ·K ⁻¹)	2.6	2.1	
Linear expansion coefficient, $lpha_4$ (K-1)	0.00001	0.000007	
Specific heat, c (J·kg ⁻¹ ·K ⁻¹)	1050	840	
Fusing temperature, $T_f(K)$	2304	1999	
Boiling temperature, $T_b(K)$	2727	2503	
Heat of fusing, h_s (kJ·mol ⁻¹)	33.6198	7.7	
Heat of boiling, h_b (kJ·mol ⁻¹)	600	600	
Refractive index, n [Table 3]	1.4985	1.4985	
Extinction coefficient, k [25]	10.0347	10.0347	

表1 コンクリートの材料物性

なお、気相に変化する粒子はモデルから削除され、蒸気金 属の再堆積は無視されている。

レーザは粒子として計算された。7200 個のレーザ粒子 を同心円状に配置。入射レーザエネルギーは、測定された ビームプロファイル分布に従って各パーティクルに与え られた。なお、レーザビーム粒子は、実験条件と同じ角度 で集光位置に向かって移動する。なお、1mのコンクリー トを貫通してガラス化できたレーザ加工条件は表2に示 す。なお、各名称説明は図2に示す。

表2 レーザ加工条件

In some st		Fusion process for cutting					
laser Prehea energy (MJ) (MJ)	Drohoot	Laser Travel power speed (kW) (mm/min)	Turned	Focusing		Stroke	
	(MJ)		Length (m)	Position (m)	Length (m)	Speed (m/mi n)	
58	10	50	6	1	0.68	0.5	0.5

3. 結果

図3は、図1のレーザ入射の光軸に沿った中心断面に おけるレーザの表示および非表示の典型的な計算結果を 示す。レーザ照射時間は1210秒であり、地球シミュレー タでは 24.5 時間の計算時間を要した。溶融コンクリート は重力により引き下げられ、貫通孔が形成される。この貫 通孔をレーザビームが反射しながら通過し、レーザ照射 時間毎に溶融コンクリート内部を溶融させることを確認 できた。なお、溶融体積の実験値 2.90×10⁶ mm³ と 2000 K 以上になった計算での総量 1.67×10⁶ mm³ を比較すると、 桁が一致しているので、計算値は概ね正しいと考える。

4. 結論

レーザを光粒子とした粒子法により、溶融コンクリー ト内部のレーザ伝搬を検討した。溶け落ちたコンクリー トによって形成された貫通孔が、溶融コンクリート内部 へのレーザの伝搬を可能にすることを数値的に明らかに した。この新しい知見は、超高出力レーザを用いた福島第 一原子力発電所の廃炉や月面建設に必要な月の砂のガラ ス化に関する基礎的知見を提供するものである。

文献

[1] Y. Kawahito, H. Wang, et al., "Ultra high power (100 kW) fiber laser welding of steel," Opt. Lett. (43), 4667, (2018).

[2] S. Goya, H. Mori, et al., "Development of Thick Concrete Cutting System Using High-Power Laser I," Mitsubishi Heavy Industries technical review (58-1), 1, (2021).

[3] C. Zhao, N. D. Parab, et al., "Critical instability at moving keyhole tip generates porosity in laser melting," Science (370), 1080, (2020).

[4] S. A. Khairallah, A. A. Martin, et al., "Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing," Science (368), 660, (2020).

[5] M. Fujita, "Toward the Production of Base Station Construction Materials Using Lunar Resources", Laser Cross (410), 1, (2023).

[6] K. W. Farries, P. Visintin and S. T. Smith, "A pilot study of laser-welding cast basalt blocks for lunar construction", Case Studies in Construction Materials (19), e02507, (2023).

[7] 15. J. M. Dodds and J. Rawcliffe, "Radionuclide distribution during ytterbium doped fibre laser cutting for nuclear decommissioning", Progress in Nuclear Energy (118), 103122, (2020).

図3 レーザ入射の光軸に沿ったコンクリート中心断面における典型的な計算結果(時間: 350 s と 600 s)