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1. Introduction 

The ultimate goal of this project is to understand the thermal, 

compositional, and rheological structures of the present-day 

Earth’s mantle under the constraints imposed by surface 

observations, such as plate motion, top surface and core–mantle 

boundary (CMB) topographies, and geoid and gravity anomalies. 

With a limited model that ignores the mantle lateral viscosity 

variations and truncates the short-wavelength structure, the surface 

observations obtained from a computed instantaneous global 

mantle flow model can be compared with those obtained from a 

semianalytical method using a propagator matrix [1]. In this study, 

the formulations of the surface observations and the evaluation of 

the misfits of the results obtained from semianalytical and 

numerical methods are presented. 

2. Spherical harmonic expansions of geoid and gravity 

anomalies 

The gravitational potential V is related to the density ρ through 

the following Poisson equation: 

2
4 ,V G  = − (1)

where G is the universal gravitational constant. The potential 

anomaly δV from a density anomaly δ also satisfies the Poisson 

equation: 

2
4 .V G   = − (2)

The geoid anomaly δN at the Earth’s top surface (i.e., radius r = r1) 

is obtained by dividing δV by the radial derivative of the potential 

anomaly, which corresponds to the gravitational acceleration at the 

top surface g(r1):
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The potential and density anomalies are expressed in terms of an 

infinite series of radius functions multiplied by spherical harmonic 

functions, Ylmi, at each surface along the latitude and longitude of θ 

and φ, respectively, where l is the degree, m is the order, and i is the 

sine or cosine terms. 

( , , ) ( , , ) ( , ),

( , , ) ( , , ) ( , ),

lmi lmi

lmi lmi

V r V r Y

r r Y

       

       

=

=
(4) 

The solution is solved by considering the density perturbation of 

the thickness dr at a specified radius r = b. The inner and outer 

solutions for the potential anomaly at r = b satisfy: 
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For the Earth’s interior with a radius of r = r1, the anomalous 

potential at the top surface is given by 
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Therefore, the geoid and gravity anomalies at the top surface are 

given as: 
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For the Earth’s mantle, with outer and inner radii of r1 and r0, 

respectively, the total geoid anomaly is the internal density 

anomaly integrated from r0 to r1 and the density anomaly due to 

the topographic deflection at the top surface and CMB. Thus, the 

net geoid and gravity anomalies derived from all three 
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contributions are expressed as follows: 
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where Δρ1 and Δρ0 are the density differences at the top surface and 

CMB, respectively. The normal stresses acting on the top surface 

and CMB, σrr (positive for extension), are expressed as follows: 
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where p and η are the dynamic pressure and viscosity, respectively. 

The topographies at the top surface and CMB are given by 
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3. Calculations of geoid and gravity anomalies 

The instantaneous mantle flow was calculated numerically and 

semianalytically using the mantle convection code ConvGS and 

the propagator matrix method, respectively. Following a previous 

study [2], the density anomaly in the mantle was converted from 

the S-wave velocity anomaly using seismic tomography and 

global slab models. The mantle viscosity is considered to be of 

three layers, i.e., the lithosphere at depths of 0–100 km, the upper 

mantle at depths of 100–660 km, and the lower mantle at depths of 

660–2,891 km. The viscosity contrast between the lithosphere and 

upper mantle (Δηlit) varied from 1 to 100, and that between the 

lower and upper mantles (Δηlwm) varied from 1 to 100.  

In the propagator matrix method, the modeled mantle thickness 

is divided into N discrete layers, and the density anomaly within 

each layer is assumed to be concentrated in the center of each 

discrete layer. In the calculation, N is fixed at 290, which is a 

sufficient resolution for the three-layer model. Thus, Eqs. 9 and 10 

can be rewritten as follows: 
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where rn is the radius of the center of the n-th discrete layer, rn-1/2 and 

rn + 1/2 are the radii of the bottom and top of the n-th discrete layer. 

For the numerical model, the density anomaly is assumed to be 

uniformly distributed in the vertical direction within each 

computational grid. The number of grids in the radial direction is set 

to N = 128. Thus, Eqs. 9 and 10 can be rewritten as follows: 
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4. Results 

Figure 1 shows the top surface and CMB topographies and the 

geoid and gravity anomalies for the model with Δηlit = 1 and Δηlwm 

= 30 from the semianalytical and numerical methods. In this 

model, a highly viscous lower mantle tended to reproduce the 

observed geoid pattern, namely the positive geoid anomaly in the 

western part of the Pacific, Africa to the North Atlantic, and the 

western margin of South America. The spatial patterns and 

magnitudes of the top surface and CMB topographies and the 

geoid and gravity anomalies obtained using the two methods were 

consistent. 

The misfits of the geophysical patterns between the 

semianalytical and numerical methods for all models are shown in 

Figure 2. The results show that the misfits are almost below a few 

percent for all degrees. Although the misfits reach approximately 

10% at the lowest degrees when Δηlit or Δηlwm is a large value, there 

seems to be no remarkable tendency of misfits at each degree 

among the models with different values of Δηlit and Δηlwm. This 

result suggests that the misfits between the two methods depend on 

the spatial pattern of the mantle flow rather than on differences in 

the potential accuracy of the numerical solutions. 

Fig. 1. Top surface and CMB topographies and geoid and gravity 

anomalies obtained from the semianalytical (left panels) and 

numerical (right panels) methods with Δηlit = 1 and Δηlwm = 30. 

5. Concluding remarks 

In this report, the misfits of topographies and geoid and gravity 

anomalies obtained from semianalytical and numerical 

calculations are evaluated. Because the pattern of mantle 

convection strongly depends on various model parameters [3], 

surface observations are useful for constraining the mantle 

structure. In the future, using a time-dependent mantle convection 

model, the relationship between temporal changes not only in these 

surface observations but also in the surface environment will be 

studied, e.g., long-term sea level changes that are indirectly related 

to solid-earth dynamics, including the supercontinent cycle and 

evolution of oceanic plates [4]. 

Fig. 2. Misfits of the top surface and CMB topographies (blue and 

black lines) and geoid and gravity anomalies (red and green lines) 

as a function of spherical harmonic degrees up to 32 for each 

model between the semianalytical and numerical methods. Δηlit 

and Δηlwm are the viscosity contrast of the lithosphere and lower 

mantle relative to the reference upper mantle, respectively. 
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