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1. Nankai subduction zone high resolution full

waveform tomography

The Nankai subduction zone has hosted both many 

devastating earthquakes, such as 1944 Tonankai and 1946 

Nankai earthquakes, and various slow earthquakes like tremors 

and low-frequency earthquakes. The physical properties of the 

subsurface structure, especially along the plate interface, are key 

to understand the factor controlling the occurrence of the wide-

range of the subduction zone earthquakes. 

An active source seismic survey using ocean bottom 

seismometers (OBSs) is an effective tool to reveal physical 

properties of the subsurface structure in the seismogenic 

subduction zones.  Conventionally, the active source OBS data 

have been processed by the traditional ray-based methods such 

as first-arrival travel time (FAT) tomography (e.g., Zelt and 

Barton, 1998 [1]).  However, the spatial resolution of the FAT 

tomographic results is not sufficiently high to discuss the physical 

properties controlling the wide-range of the earthquakes along 

the plate boundary faults.  The full waveform inversion (FWI) 

that utilizes observed waveform itself is expected to be a good 

solution to overcome the limits of the FAT tomography. 

FWI has been widely used in industry to investigate oil and gas 

reservoirs. In contrast, FWI has been rarely applied on academic 

lithospheric scale seismic explorations because the imaging 

targets of the academic studies are generally much bigger and 

deeper than those of the industry exploration. The first crust-scale 

waveform imaging was implemented in the Tokai area of the 

Eastern Nankai Trough (Dessa et al., 2004 [2]; Operto et al., 2006 

[3]), but their results were not clear because the imaging 

techniques was not enough matured to apply the actual data sets. 

Later, with the updating of inversion techniques, the resolution 

and accuracy are greatly improved in the subsequent FWI 

applications in the Kumano basin (Kamei et al., 2013 [4]) and in 

the Tokai area (Górszczyk et al., 2017 [5]).  

These former results adopted the FWI method implemented in 

the frequency domain, although the frequency-domain FWI has 

some shortcomings. Therefore, we perform the time-domain 

FWI, which could be more efficiency to deal with different 

frequency contents.  However, the time-domain FWI requires 

much more computing resources than the frequency-domain 

FWI. And it remains various issues in applying the method to the 

actual data sets of the lithospheric-scale studies. 

In this study, we first aim to establish correct and robust 

procedures for the FWI.  Then, we will apply the FWI to the 

actual data set. The data set was obtained in 2019 using 100 OBSs 

deployed at a spacing of 1-km along a 2-D survey line in the 

central Nankai Trough off the Cape Shiono, Kii Peninsula.  Our 

final goal is to discuss controlling factors on the various fault slip 

behaviors from the megathrust to the slow slips in this subduction 

zone. 

Since last year, the time-domain FWI program has been 

successfully run on ES4. In the subsequent period, I conducted 

continuous testing of various parameters, including but not 

limited to the evaluation of uncertainties in observed data (rely 

on signal-to-noise ratio), starting velocity models, and source 

signatures. Different inputs, as well as inversion parameters, 

yielded diverse outcomes. To discern the preferred one, I 

carefully compared and analyzed the various results. 

The typical results are illustrated in Fig. 1, based on the starting 

model obtained by the first arrival tomography (FAT) (Qin et al., 

2020 [6]), and chose different misfit functions based on acoustic 

full waveform inversions. I adopted a frequency continuation 

strategy, commencing with the low-frequency band and 

progressively increasing the frequency step by step. Considering 

the frequency contents associated with the discretized grid size, 

computational costs rapidly rise when the frequency exceeds 6 

Hz, and I have to reduce the iteration number for the higher 

frequency band inversion. Consequently, the primary 

computations were carried out in the low-frequency band, with 

the higher frequency band undergoing fewer than 100 iterations 

to gain insights into the resolution issue. Uncertainty and spatial 

resolution tests were conducted, as depicted in the checkerboard 

test shown in Fig. 2. 
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Based on our achievements in 2023, additional supporting 

materials are required to facilitate the interpretation of our results. 

We plan to conduct various forward modelings to validate the 

different outcomes. Subsequently, using this foundation, we aim 

to discuss the physical parameters associated with the diverse 

fault slip behaviors, ranging from the megathrust to the slow slip 

within this subduction zone. 

 

Fig. 1 Starting velocity model (FAT) and the FWI velocity model. 

 

Fig.2 checkerboard resolution test by using three different grid 

sizes. 

 

2. Bayesian first-arrival travel time tomography using 

physics-informed neural networks for seismic 

refraction survey data in the Nankai subduction zone 

First-arrival travel time tomography (FAT) using refraction 

seismic data is a crucial and useful technique for understanding 

the seismic wave velocity structure at depth. In order to ensure 

the reliability of the estimation, it is essential to quantify the 

uncertainty of seismic velocity estimates in tomography. For this 

purpose, Bayesian estimation has been introduced to seismic 

tomography to estimate the posterior probability distribution 

function (P-PDF) of the velocity structure based on errors in 

travel time data and prior information (e.g., [7]). All of these 

previous studies introduce a grid- or mesh-based discretization of 

the analysis domain for calculating the travel time using a 

numerical method and parametrizing the velocity for Bayesian 

estimation. Since this estimation problem is nonlinear, sampling 

methods such as Markov chain Monte Carlo (MCMC) are 

commonly used.  

Physics-informed neural networks (PINN) [8], which solves 

partial differential equations and inverse problems with neural 

networks (NNs) constrained from the equations, has attracted 

much attention in recent years. It has been also applied to seismic 

tomography [9]. This is a mesh-free framework that leverages 

continuous functions represented by NNs, which are plausible 

and flexible for modeling the velocity structure. Considering this 

advantage, we have developed a novel and efficient Bayesian 

estimation framework for PINN-based seismic tomography [10]. 

In this study, we applied the proposed method to first-arrival 

travel time data acquired in a marine seismic refraction survey 

conducted in the Nankai subduction zone.  

 

We studied seismic refraction data available along the line 

KI03 located off Mie Prefecture, which were obtained by using a 

tuned airgun array and ocean bottom seismometers (OBS) (Fig. 

3). We estimated two-dimensional (2D) P-wave velocity 

structure and its uncertainty using 14,146 first-arrival travel times 

manually picked from the refraction data by using the PINN-

based ensemble estimation method [10]. This method represents 

seismic velocity structure and travel time function using NNs 

instead of grid or mesh. The travel time NN can be trained for the 

seismic velocity structure represented by the velocity NN 

through the PINN framework by minimizing the residual of the 

Eikonal equation, which simulates wavefront propagation and 

determines travel time, evaluated straightforwardly with the help 

of automatic differentiation of the NN outputs. An ensemble of 

velocity NNs that represents the posterior probability for the 

travel time data formulated by Bayes' theorem, i.e., the stochastic 

property of estimation uncertainty, were generated through the 

combined use of PINN-based travel time calculation and 

function-space particle-based variational inference (ParVI) 

[11][12]. We employed ParVI because it is known as a Bayesian 

estimation method suitable for parallel computation.  

 

From the 256 velocity NNs obtained via the ensemble 

estimation (Fig. 4A), we obtained the mean model (Fig. 4B) and 

standard deviation (Fig. 4C) of the seismic velocity structure. The 

obtained mean seismic velocity models clearly show the north-

dipping surface of the subducting oceanic plate and low 

velocities areas corresponding to an accretionary prism and the 

forearc basin without introducing any prior information.  These 

features are in general good agreement with existing seismic 

structures modeled by deterministic tomographic methods [13]. 

The standard deviation of the ensemble, i.e. the uncertainty of the 

seismic velocities, is generally small in the area covered by the 

ray-path of the first arrivals. It shows spatial variations even 

within the ray-coverage area, suggesting the uneven distribution 

of the ray-paths. To obtain this single result, we ran calculation 

using 16 NVIDIA A100 GPU equipped in the Earth Simulator 

for about 100 hours. We additionally performed a number of runs 

for parameter studies of Bayesian estimation.  

 

Seismic velocity structure models serve as the basis of other 

seismic data analysis such as hypocenter determination and 
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seismic reflection methods. By using the obtained ensemble 

velocity model as an input to these subsequent analyses, we can 

accurately consider uncertainty propagation, resulting in more 

accurate estimates. We performed such analyses for an 

earthquake occurred in the vicinity of the survey line as an 

example and confirmed the positive effect of considering the 

uncertainty propagation in hypocenter determination. A 

manuscript based on these results has been submitted to a 

scientific journal and is now under review.  

 

Based on these developments, we plan to extend the 

framework to three-dimensional (3D) analyses in FY2024, so 

that more realistic velocity structure model as the basis for 

hypocenter determination can be obtained.  

 

Fig. 3. A map of the study area. The circles and triangles denote 

the locations of OBSs which were installed in the survey line 

KI03 and the DONET observation nodes, respectively. The 

yellow star denotes the epicenter of the 2016 Mw 5.9 earthquake 

occurred in the vicinity of the line KI03. The gray rectangle 

denotes the approximate focal region of the 1944 Tonankai 

earthquake.  

 

Fig. 4. (A) 256 velocity models along the KI03 line represented 

by NN ensemble members trained by combination of PINN and 

ParVI. In (A) and (B), the gray shaded area denotes the region 

where standard deviation is larger than 0.6. In (A) and (B), the 

white dashed line denotes the plate boundary model of [14]. (B) 

The mean velocity model calculated based on the estimated 

ensemble. (C) The standard deviation calculated based on the 

estimated ensemble. The gray dot-dashed line denotes the bottom 

of ray coverage for the mean model. 
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