AFES を用いた火星・金星大気の高解像度大循環シミュレーション

林 祥介(神戸大学 大学院理学研究科)

1. はじめに

火星や金星の大気大循環は探査や数値計算 によって様々に調べられてきたが,火星大気 中に常に浮遊するダストの存在や惑星規模ダ ストストームの発生,金星大気のスーパーロ ーテーションといった,地球では見られない 現象の発生機構の理解は十分ではない.この ことは,その背景にある大気擾乱の記載と構 造の理解の不十分さを反映しているだろう. そこで本課題では地球型惑星大気大循環モデ ルとして拡張してきた AFES を用い,地球と 同じ力学的枠組みで火星と金星の大気循環・ 擾乱を調査・記述することを目指す.

2. モデル

本課題で用いるモデルは、地球シミュレー タ上で高速に実行できるように最適化されて きた大気大循環モデル AFES (AGCM (Atmospheric General Circulation Model) for the Earth Simulator) (Ohfuchi et al., 2004)を 基に、金星大気と火星大気を計算するために、 それらの条件に適当な放射過程、乱流過程、 地面過程を導入したものである.このモデル は、ESにおいて、現状では、120 ノードで実 行可能 (ベクトル化率と並列化効率のしきい 値を上回る)であることを確認しており、金 星、火星において惑星規模循環から、O(10 km)の水平スケールを持つ小規模擾乱まで を同時に表現しながら、大気循環構造を調べ ることが可能である.

3. 結果

3.1. 金星大気実験

これまでに、金星大気大循環の大きな謎で あるスーパーローテーションの解明を目指し て数値実験と解析を行ってきた.過去の研究 では、スーパーローテーションの駆動のため に下層に強い加熱強制を与え、低解像度モデ ルを用いて長時間積分する方法が主流であっ た.しかし我々はこれまで,現実的な太陽加 熱強制を用いて、雲層付近(高度約 45-70 km)の大気安定度の低い層に注目した実験 を実行し、傾圧波が運動量や熱の輸送に重要 であることを指摘してきた (Sugimoto et al., 2013, 2014a). また,現実的な太陽加熱によ って雲層高度のスーパーローテーションが維 持され,同時に,雲層高度で各緯度帯に特徴 的な波が存在することを示した.中緯度域, 極域に見られた大気波動は,それぞれ傾圧不 安定,極渦の順圧不安定によって励起される (Sugimoto et al., 2014b; Ando et al. 2016). 赤道域の大気波動の励起メカニズムは検討中 であるが,観測されている惑星規模波 (いわ ゆる赤道ケルビン波)との関係が示唆される. さらに,水平格子間隔約 79 km,鉛直 120 層 (T159L120) の高い解像度の数値実験にも取 り組み,小規模大気擾乱の特性を調べてき た.

今年度は、金星大気実験のさらなる高精度 化として、精密な放射過程の開発と導入を試 みる一方、T159L120の解像度の数値実験を 継続し、得られた雲層上部における大気波動 の構造やエネルギースペクトルの成因、高緯 度域における極渦やそれを取り巻く周極帯状 低温域 (cold collar)の形成メカニズムの解 明を目指した.同時に、これまでに用いてき たT159L120の解像度から、それぞれ倍の水 平解像度 (T319L120)および倍の鉛直層数 (T159L240)にした実験を行った.以下に主 要な成果を示す.

大気波動の構造

計算で得られた熱潮汐波の構造を解析した結 果,これまでの観測で知られていた,雲頂高 度で硫酸雲のY字構造や弓状構造の形成に, 熱潮汐波が寄与する可能性が示唆された.ま たケルビン波的な空間構造をもつ大気波動や, 惑星の大きさに比べてはるかに小規模の重力 波も表現された(図 1, Takagi et al., in preparation).

② 大気中のエネルギースペクトルの成因 計算で得られた流れ場を球面調和関数展開し、 回転成分と発散成分に分けて波数間のエネル ギーの収支を診断する新しい解析方法を考案 し、これまでにない視点での解析を進めた

(Kashimura et al., in preparation).

③ 周極帯状低温域の成因

大気波動が駆動する子午面循環による熱輸送 により,極域の昇温が恒常的に起きることを 明らかにした.熱潮汐波が存在しない条件で の感度実験も行うことで,熱潮汐波が周極帯 状低温域の再現に必須であることを示した (図 2、Ando et al., 2016).

④ 極渦の鉛直構造

これまでの電波掩蔽観測結果と整合的な温度 の鉛直構造の表現に成功し、その構造が極渦 の順圧不安定によって発現することを明らか にした (Ando et al., in preparation).

上記の成果は、本課題で実施している金星

シミュレーションが, 雲層付近の大気擾乱の 特徴の解明に非常に有益であることを示して いる.

3.2. 火星大気実験

これまでに、火星大気中の惑星規模から中 小規模まで様々な時間・空間スケールを持つ 大気循環・擾乱の構造と、それらがダストの 巻き上げにおいて果たす役割を明らかにす ることを目指して数値実験と解析を行って きた.昨年度までに、水平格子点間隔約 11 kmの短期間のシミュレーションを実施し、 そこに見られる大気擾乱とそれによるダス ト巻き上げ過程について調べてきた.その 中で、低緯度に見られる多数の小規模渦が ダストの巻き上げにおいて重要な役割を果 たしていることが示されていた.今年度は、 これら小規模渦の構造を明らかにすること を目指し、その解析を進めた.

高解像度シミュレーションにおいて低緯度 に見られる小規模渦は、モデルで表現され る対流活動に起因していると考えてきたが、 その特徴を明らかにするために、これまで の渦度の調査に加えて流れの発散の分布を 調べた(図3,4).その結果、小規模渦の分 布は、同じ空間スケールの流れの発散を伴 っており、渦度と発散の値はほぼ同じオー ダーであることが示された.このことは、 小規模渦がモデルで表現される対流運動の 結果として生じていることを支持するもの である.

図 1. T159L240 の解像度の金星大気実験で 得られた高度 75 km の鉛直流.

図 2. T42L60 の解像度の金星大気実験 で得られた高度 68 km 付近の温度.

図 4. T639L96 の解像度の火星大気実験で 得られた高度 3 km 付近の流れの発散.