Massively parallel simulation of Geologic CO₂ storage on the Earth Simulator **Project Representative** Hajime Yamamoto Taisei Corporation **Authors** Hajime Yamamoto^{*1}, Shinichi Nanai^{*1}, Keni Zhang^{*2}, Pascal Audigane^{*3}, Christophe Chiaberge^{*3}, Noriaki Nishikawa^{*4}, Yuichi Hirokawa^{*4}, Satoru Shingu^{*4}, Ryusei Ogata^{*5}, Kengo Nakajima^{*6} * 1 Taisei Corporation * 2 E.O. Lawrence Berkeley National Laboratory * 3 Bureau de Recherches Geologiques et Minieres (French Geological Survey) * 4 Japan Agency for Marine-Earth Science and Technology * 5 NEC Corporation * 6 The University of Tokyo **Abstract** CCS (carbon dioxide capture and storage) is a promising approach for reducing the greenhouse gas content in the atmosphere, through capturing carbon dioxide (CO_2) from large emission sources and injecting it into reservoirs (such as deep saline aquifers). Large-scale storage projects will likely involve very long-term storage of huge amounts of CO_2 , potentially exceeding hundreds of millions of tonnes (Mt). This study intends to demonstrate potential benefits of massively parallel computing technology for simulating geologic CO_2 storage for important scientific and engineering topics. In this year, uncertainties due to grid resolution effects are investigated for two topics: 1) CO_2 behaviors in highly heterogeneous geologic formations; 2) diffusion-dissolution-convection process that may cause gravity instability greatly enhancing convective mixing of dissolved CO_2 in storage reservoirs in long-term. **Keywords:** large-scale simulation, CCS, CO₂, global warming, groundwater Figure 1 CO₂ plume spreading from the injection well in homogeneous (left) and heterogeneous (right) model. The heterogeneous model represents irregular nature of sand/shale distribution in the reservoir, while the hydraulic properties (porosities and permeabilities) are averaged and uniformly assigned in the homogeneous model. Obviously CO₂ tends to migrate in sand portions with higher permeability, suppressing the gravity override (i.e., less-dense CO₂ flows over denser groundwater) Figure 2 A preliminary simulation result of diffusion-dissolution-convection process in a radially symmetrical model at a reservoir-scale. CO₂ is injected in supercritical state with the rate of 100kt/year for one year. Due to the gravity convection, CO₂ dissolution in groundwater is greatly enhanced and eventually the supercritical CO₂ disappears.