Cloud simulation with multi-dimensional bin-microphysics model

Akihiro Hashimoto

Meteorological Research Institute

K computer

March 9, 2015 (Mon) 9:00~17:40 Venue: Nagoya University, Higashiyama Campus, E&S Hall (E&S Building)

Physicochemical properties of hydrometeor

 Water

 Hygroscopic

 material

 Non-hygroscopic

 material

 Aspect ratio

 Volume

Three properties

Water

Five properties

Ice

Eulerian framework

Three-dimensional bin

Five-dimensional bin

 $f_i =$

Advanced Numerical Simulation of Cloud and Precipiation with Multi-binned Microphysics

Prognostic variables

 $x_{j} = \begin{cases} \text{mass of water} \\ \text{mass of aerosol I} \\ \text{mass of aerosol II} \end{cases}$

$$\frac{\partial f_i}{\partial t} = \sum_{j=1}^n \frac{dx_j}{dt} \frac{\partial f_i}{\partial x_j}$$

total number concentration total potential energy total temperature total mass of water total mass of aerosol I total mass of aerosol II total mass of chemical element I total mass of chemical element II total mass of chemical element II total mass of chemical element IV total mass of chemical element V total mass of chemical element V

Hashimoto, A. 2014: Development of sophisticated bin-microphysics model, *Low Temperature Science*, **72**, 71-78. (in Japanese with English abstract and figure captions) <u>http://hdl.handle.net/2115/55019</u>

mass of water volume $y_i = \{ aspect ratio \}$ mass of aerosol I mass of aerosol II total number concentration total potential energy total temperature total volume total aspect ratio total mass of water total mass of aerosol I $g_i =$ total mass of aerosol II total mass of chemical element I total mass of chemical element II total mass of chemical element II total mass of chemical element IV total mass of chemical element V total mass of chemical element VI

March 9, 2015

Microphysical processes

表2:モデルで考慮される微物理過程.

Table 1 : Microphysical processes involved in the model.

	Production terms	Microphysical processes
Liquid phase	$\left(\frac{dx_j}{dt}\right)_{m_j}$	Droplet nucleation
		Condensational growth/Evaporation
		Collision coalescence/breakup
		Spontaneous breakup
Solid phase	$\left(\frac{dy_j}{dt}\right)_{m_j}$	Ice nucleation
		Depositional growth/Evaporation
		Aggregation
		Spontaneous breakup
iquid and Solid phases	$\left(\frac{dx_j}{dt}\right)_{m_j}, \ \left(\frac{dy_j}{dt}\right)_{m_j}$	Riming
		Melting

Hashimoto, A. 2014: Development of sophisticated bin-microphysics model, *Low Temperature Science*, **72**, 71-78. (in Japanese with English abstract and figure captions) <u>http://hdl.handle.net/2115/55019</u>

Figure 4. Plots of melted diameter versus (a) bulk density, (b) solute concentration and (c) aspect ratio of simulated ice particles at the 1.35-km ($-12.3 \degree$ C; blue squares), 1.57-km ($-14.0 \degree$ C; green squares), 1.94-km ($-16.9 \degree$ C; orange triangles) and 2.5-km ($-21.4 \degree$ C; black circles) levels. Only the particles with number density greater than one per 10-mol air are plotted. (d) Illustration of simulated ice particles at the 2.5-km level. Particles are drawn at random positions in the plane so that their numbers reflect the simulated number density. Ellipses with horizontally long axes indicate oblate spheroids. Bulk density is denoted by the brightness.

Misumi, R., A. Hashimoto, M. Murakami, N. Kuba, N. Orikasa, A. Saito, T. Tajiri, K. Yamashita, and J.-P. Chen (2010) M icrophysical structure of a developing convectives now cloudsimulated by an improved ver- sion of the multidimensional bin model. Atmos. Sci. Let., 11, 186-191. doi:10.1002/asl.268.

March 9, 2015

2-D idealized simulation

Mass-Density Diagram

Potential applications

Microphysical interpretation of in-situ and remote-sensing observations of cloud

Reference model of bulk microphysics

K computer

Verification of modules

Preparation of 3-D realistic simulation

March 9, 2015