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Moisture and cumulus convection

 The large-scale variability of moisture in space and time
significantly controls the development of cumulus
convection, while cumulus activity will play a role in

moistening the larger-scale atmosphere by transporting
moisture.

— Vertical development of cumulus convection (cumulus

mode: Cu, Cg, and Cb; Johnson et al. 1999) (Takemi et al.
2004)

— Shallow to deep convection transition in MJO (Del Genio
et al. 2012)

— Congestus preconditioning (Waite & Khouider 2010)

 Tropospheric moisture is a key to understand the nature of

tropical cumulus convection and their interactions across
scales



Smaller buoyancy, weaker updraft in tropical
cumulus clouds

Tropical—oceanic: small buoyancy, high LNB, weak updraft
Mid-lat—continental: large buoyancy, lower LNB, strong updraft
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Idealized numerical experiments on tropical vs
midlatitude squall lines

* Investigate the sensitivity of the intensity and organization of
SLs to tropical-oceanic (TOGA-COARE) and midlatitude-
continental (US Great Plains) environments.

 The initial environment conditions are closely coordinated by
keeping CAPE unchanged between tropical and midlatitude
environments.

e The sensitivity is examined by changing:

— vertical wind shear
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System organization: cloud features
Shear case: 10 m/s /0—5 km

a) TROPICS-W: 10/0-5 SHEAR b) TROPICS-C: 10/0-5 SHEAR ¢) MIDLATM-W: 10/0-5 SHEAR
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Mean Precip Intensity (mm/h)

Mean precipitation intensity
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Convection-resolving simulation of tropical

cumulus during CINDY/DYNAMO
e Simulation period: 1 Oct —1 Dec 2011
e WRF/ARW Version 3.3.1
e Domain: 1-way nested, 21 km height with 61 levels
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Large-scale field: Longitude-time diagram

Observed (JMA Global Analysis) Simulated
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Cloud cover & lapse rate/PW in Domain 4
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Cloud cover & humidity in Domain 4
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Layer moisture content: 20-30 Nov
Domain 4 versus Domain-4 area within Domain 1
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Thermodynamic properties of air parcels

Analysis for the period of 20-30 Nov 2011
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Summary

 The vertical development of cumulus clouds are closely
related to the relative humidity of the environment at levels
lower than the cloud-top height.

e Higher moisture content is seen in the finest-resolution
domain than the corresponding area within the coarsest-
resolution domain; suggesting moistening by cumulus clouds.

e Convective cores with stronger updrafts are less diluted with
the environment, which contributes to moistening the
atmosphere.

Takemi, 2015: Relationship between cumulus activity and environmental
moisture during the CINDY2011/DYNAMO field experiment as revealed
from convection-resolving simulations. under review
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