"The 3rd Research meeting of Ultrahigh Precision Meso-Scale Weather Prediction" Thu. 21 Mar. 2013

Triple eyewall experiment of the 2012 typhoon "Bolaven" using cloud resolving ensemble forecast

Seiji ORIGUCHI, Kazuo SAITO, Hiromu SEKO, Wataru MASHIKO (MRI) Tohru KURODA (JAMSTEC)

JMA's Radar image (RISS) 05JST 26 04JST 26 06JST 26 03JST 07JST 08JST 26 09JST 26 11JST 26 12JST 26 10JST 26 16JST 26 2 16 24 32 40 48 56 64 80 14JST 26 171ST 2 13JST 26 0 1 2 4 8 12 16 24 32 40 48 56 64 80 191 Nago station **15JST**; Outer eyewall **18JST**; Middle eyewall 20JST; Inner eyewall **21JST**; Center position of typhoon

0 1 2 4 8 12 16 24 32 40 48 56 64 80

0 1 2 4 8 12 16 24 32 40 48 56 64 80

4 8 12 15 24 32 40 48 56 54 8

Surface observation data (Nago station) 26 – 27 Aug 2012

Surface observation data (Nago station) Approaching period, ~21JST 26 Aug

0 1 2 4 8 12 15 24 32 40 48 55 54 80

0 1 2 4 8 12 16 24 32 40 48 56 54 80

mm/h(kyoudo) 2012/08/26 1900JST 0 1 2 4 8 12 16 24 32 40 48 56 64 80

0 1 2 4 8 12 16 24 32 40 48 56 54 80

0 1 2 4 8 12 15 24 32 40 48 56 54 80

Ensemble experiment under the changed physical conditions

•<u>Case1</u>

3 10km(789x251) → 2km(400x400)
[10km: 2mom3iceCMF+KF, MYNN3, 2km: 2mom3iceCMF, MYNN3]

Case2

2 $5km(789x251) \rightarrow 1km(800x800)$ [5km: 2mom3iceCMF, MYNN3, 1km: 2mom3iceCMF, deardorff]

Case3

1 $5km(789x251) \rightarrow 1km(800x800)$ [5km: 2mom3iceCMF+KF, MYNN3, 1km: 2mom3iceCMF, deardorff]

Case4

5 2km(800x800) [2km: 2mom3iceCMF, MYNN3]

Case5

4 2km(800x800) [2km: 2mom3iceCMF, deardorff]

Case6

? $2km(1800x1440) \rightarrow 500m(3000x3000)$ [2km: 2mom3iceCMF, deardorff, 500m: 2mom3iceCMF, deardorff]

Experimental conditions of Case3

<Model settings>

	5km-forecast	1km-forecast
Model	JMA-NHM	
Resolution • Grid size	5km • 721x577x50	1km • 800x800x60
Time step	24(sec)	4(sec)
Initial condition (CNTL)	Meso analysis (NHM-4DVAR) Resolution 5km (Inner-loop 15km, Increment method 5km, Window 3hr)	FT=06 of 5km forecast
Boundary condition (CNTL)	GSM forecast (interval 1hr)	5km forecast (interval 1hr)
Initial condition (ENS)	Meso analysis + perturbation of JMA 1 week forecast	FT=06 of 5km forecast
Boundary condition (ENS)	GSM forecast + perturbation of JMA 1 week forecast	5km forecast (interval 1hr)
Member	11(CNTL+ENS)	
Treatment of density	Full compressibility	
Basic equations	Elasticity • Nonhydrostatic • Solution of HE-VI	
Cloud microphysics • Convective scheme	2-moment 3-ice bulk method +Kain-Fritsch scheme	2-moment 3-ice bulk method
Layer • Turbulent scheme	MYNN Level3	Deardorff(1980)

(FT12)

(FT00)

Resolution 1km, Member 11, Forecast Time 24hr Analysis term 8/26 04JST~8/26 09JST(6hr)

(FT24)

<Model domain>

Reproducible criteria of multiple eyes?

 There aren't objective(numerical) evaluation method or common indicator between researchers.

• Therefore, we think the following 2 criteria.

•We don't decide by shape of precipitation distribution of the short time. We judge by shape of updrafts or water substances(<u>Qc+Qr</u>+Qi+Qs+Qg) between 1km and 5km AGL, and if ring shape of updrafts or water substances keeps about 6 hours, we define as eyewall structure.

• Even when a part of ring changes spiral or it cuts off for the short time, if ring shape of updrafts or water substances keeps overall between 1km and 5km AGL, we define as eyewall structure.

<u>Analysis method of triple eyewall</u> ~Estimation of center position~

Braun's method 2002

Sr; Standard deviation(Psea) in ring of radius r and width 1km

①Calculation of Sp at neighborhood position ②CP_b decided by position of minimum value of Sp CP_m; Position decided by minimum surface pressure(Psea_m) CP_b; Position decided by Braun's method

<u>Results depend on the determining method of the center position,</u> <u>therefore we decided optimum position from Braun's method 2002.</u>

<u>Analysis results of triple eyewall</u> ~Estimation of center position~

Comparison of Psea m and Psea b for FT=01~06 (11member)

Different about maximum 6km between CP m and CP b

Radius of inner eyewall is about 10km. So, if we don't correct center position by Braun's method 2002, we can't get accurate analysis results.

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr CNTL

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr <u>P01</u>

201208251800 vr P01 ave01h_06h

201208251800 lw P01 ave01h_06h

201208251800 iw P01 ave01h_06h

201208251800 vt P01 ave01h_06h

20 -

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr P02

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr <u>P03</u>

201208251800 vr P03 ave01h_06h

18-

16

14 -

12 -

10-

0

201208251800 w P03 ave01h_06h

201208251800 iw P03 ave01h_06h

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr P04

300

Tangential velocity(vtm)t•Radial velocity(vrm)t•Updraft(wm)t•liquid water(lwm)t•Solid water(iwm)t average 6hr <u>P05</u>

201208251800 w P05 ave01h_06h

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

250

20

18

16

201208251800 lw P05 ave01h_06h

300

201208251800 t P05 ave01h_06h

201208251800 iw P05 ave01h_06h

<u>Tangential velocity(vtm)t Radial velocity(vrm)t Updraft(wm)t liquid water(lwm)t Solid water(iwm)t</u> average 6hr <u>M01</u>

201208251800 lw M01 ave01h_06h

201208251800 t M01 ave01h_06h

201208251800 iw M01 ave01h_06h

<u>Tangential velocity(vtm)t Radial velocity(vrm)t Updraft(wm)t liquid water(lwm)t Solid water(iwm)t</u> average 6hr <u>M02</u>

201208251800 w M02 ave01h_06h

250

-0.1 0.1 0.2 0.3 0.5

-0.2

-0.3

300

20

201208251800 lw M02 ave01h_06h

201208251800 t M02 ave01h_06h

201208251800 iw M02 ave01h_06h

<u>Tangential velocity(vtm)t Radial velocity(vrm)t Updraft(wm)t liquid water(lwm)t Solid water(iwm)t</u> average 6hr <u>M03</u>

Tangential velocity(vtm)t·Radial velocity(vrm)t·Updraft(wm)t·liquid water(lwm)t·Solid water(iwm)t average 6hr <u>M04</u>

201208251800 t M04 ave01h 06h

201208251800 iw M04 ave01h_06h

201208251800 w M04 aveO1h_O6h

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

<u>Tangential velocity(vtm)t Radial velocity(vrm)t Updraft(wm)t liquid water(lwm)t Solid water(iwm)t</u> average 6hr <u>M05</u>

201208251800 t M05 ave01h_06h

20

201208251800 iw M05 ave01h_06h

Radius of local maximum wind speed at 10m AGL Each member

Future Plan

• We will continue the experiment of Case6 (2km 1800x1440 \rightarrow 500m 3000x3000).

→ If 2km or 500m forecast results have high reproducibility about triple eyewall, we will investigate results.