2014/03/07

Mesoscale Weather Prediction with a hybrid EnKF-4DVAR system

Kosuke Ito
JAMSTEC/MRI

■ Dr. Masaru Kunii kindly provided the results of EnKF

Concept of 4DVAR

Cost function

Misfit b/w init. value of analysis and first guess

$$J = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_b)$$
$$+ \frac{1}{2} \sum_{t} (\mathbf{y}_t - \mathbf{H} \mathbf{x}_t)^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y}_t - \mathbf{H} \mathbf{x}_t)$$

Misfit b/w analysis and observation

Optimization problem

Find \mathbf{x}_0 that gives the minimum value of J (with the constraint of the model dynamics $\delta \mathbf{x}_t = \mathbf{M} \delta \mathbf{x}_0$ within data assimilation window)

Solution of BLUE (Johnson et al. 2005)

 The solution of 4DVAR and KF is the same at the end of DA (Linearity, Gaussianity, same B and R assumed)

$$\mathbf{x}_{a,t} = \mathbf{x}_{b,t} + \mathbf{M}\mathbf{B}\mathbf{M}^T\mathbf{H}^T \left(\mathbf{R} + \mathbf{H}\mathbf{M}\mathbf{B}\mathbf{M}^T\mathbf{H}^T\right)^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}_{b,t})$$

Consider the singular value decomposition below

$$\mathbf{L} \equiv \mathbf{R}^{-1/2} \mathbf{H} \mathbf{M} \mathbf{B}^{1/2} = \mathbf{U} \mathbf{D} \mathbf{V}^T = \sum_{l=1}^m \mathbf{u}_l \lambda_l \mathbf{v}_l^T$$
 observability matrix

Then, the solution can be rewritten as

$$\mathbf{x}_{a,t} = \mathbf{x}_{b,t} + \mathbf{M}\mathbf{B}^{1/2} \sum_{l=1}^{m} \frac{\lambda_l^2}{1 + \lambda_l^2} \frac{\mathbf{u}_l^T \mathbf{R}^{-1/2} (\mathbf{y} - \mathbf{H} \mathbf{x}_{b,t})}{\lambda_l} \mathbf{v}_l$$

SVD decomposition of analysis increment

(Linearity and Gaussianity assumed; Johnson et al. 2005)

$$\mathbf{L} \equiv \mathbf{R}^{-1/2} \mathbf{H} \mathbf{M} \mathbf{B}^{1/2} = \mathbf{U} \mathbf{D} \mathbf{V}^T = \sum_{l=1}^m \mathbf{u}_l \lambda_l \mathbf{v}_l^T$$
observability matrix

$$\mathbf{x}_{a,t} = \mathbf{x}_{b,t} + \mathbf{M}\mathbf{B}^{1/2} \sum_{l=1}^{m} \underbrace{\frac{\lambda_l^2}{1 + \lambda_l^2}} \mathbf{u}_l^T \mathbf{R}^{-1/2} (\mathbf{y} - \mathbf{H}\mathbf{x}_{b,t}) \mathbf{v}_l$$

analysis increment

- $lackbox{v}$ is the eigenvector of $\mathbf{L}\mathbf{L}^{\mathrm{T}}$
 - \rightarrow If **H**=**R**=**I**, **v** is the eigenvector of **MBM**^T.
- $\lambda^2 > 1 \rightarrow \text{singular vector constitutes the solution}$ $\lambda^2 < 1 \rightarrow \text{singular vector does not constitute the solution}$
- If \mathbf{R}_{ij} is small, λ is large.

Hybrid EnKF-4DVAR (Lorenc 2003)

$$J = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_b) + \frac{1}{2} \sum_{t'} (\mathbf{x}_{t'} - \mathbf{y}_{t'})^T \mathbf{R}^{-1} (\mathbf{x}_{t'} - \mathbf{y}_{t'})$$

 Conventionally, NMC-based B (climatological) is used, but EnKF-based B is preferable to represent flow-dependency.

Hybrid EnKF-4DVAR system Anomaly correlation (Buehner et al., 2010)

Why EnKF-based **B** is needed for severe weather prediction using 4DVAR?

- NMC-based B represents only the climatological correlation and is not suitable for severe weather.
- **B** has large influence on the structure of analysis increment away from observational data.
 - --> EnKF-based **B** helps to cover sparseness of observations to capture the phenomena of interest.

Implementation (Lorenc 2003, Wang et al. 2007) For simplification, I don't consider the mixture of NMC-B here.

- Since \mathbf{B}^{-1} is not easy to get, we use transformed variables \mathbf{v} defined $\delta \mathbf{x} = \mathbf{B}^{1/2} \mathbf{v}$. It simplifies $J_{\mathbb{B}} = (1/2) \mathbf{v}^{\mathsf{T}} \mathbf{v}$ and $\partial J_{\mathbb{B}} / \partial \mathbf{v} = \mathbf{v}$.
- We can obtain \mathbf{v} with $\mathbf{v}=0$ | iter=1, dJ/d \mathbf{v} .

	w/o localization	w/ localozation (α-vector method)
В	$\mathbf{X}\mathbf{X}^{T}[n \times n]$	XX [⊤] S [n x n]
$B^{1/2}$	X [n x m]	(diag(x_1) $S^{1/2}$,,diag(x_m) $S^{1/2}$) [n x mn]
dJ/d v	$B^{1/2}dJ/d\delta x$ [m]	$\mathbf{B}^{1/2}$ dJ/d $\delta \mathbf{x}$ [mn]
δχ	B ^{1/2} v [n]	B ^{1/2} v [n]

[]:size of vector or matrix, : Schur product

X: perturbations relative to ensemble mean for all members n:degree of freedom, m: num of members, S: Localization operator

Localization (Lorenz96): 1-obs. test

Implementation to JNoVA

- JNoVA is "JMA Nonhydrostatic model"-based Variational data assimilation system used for the regional forecast in JMA.
- Adjoint-based 4DVAR
- Flow-dependent B: EnKF-based 51 members
- Inner model: $\Delta x=15$ km, Outer model: $\Delta x=5$ km
- Large scale condensation
- Assimilation window: 3 hours.
- For simplicity, we show the increment of horizontal wind only.

1-obs DA around Typhoon Talas

- Obs: U (t=1h, z=1120m) indicated by ★
- Contour: background zonal wind
- Vector: analysis increment of hor. wind (z=1120m)

NMC-based **B** (Conventional) EnKF-based **B** (Hybrid EnKF-4DVAR)

Irrelevant to the vortex structure

Consistent with vortex displacement

JNoVA: 1-obs. DA around typhoon Talas

Analysis increment at initi

- Analysis increment by using located in the dense observable
- Analysis increment by using around TC and frontal cloud

Spread in EnKF members

Summary

Solution of BLUE:

Singular vector of **R**^{-1/2}**HMB**^{1/2} with large singular value determines the structure of analysis increment.

Hybrid EnKF-4DVAR

EnKF-based flow-dependent **B** is used instead of NMC-based climatological **B**.

Implementation to JNoVA

Currently ongoing. Preliminary experiments seem to work well. Further tests for localization and other tasks are needed.