第4回超高精度メソスケール気象予測研究会:2014.3.7

下層水蒸気の蓄積過程における 水平解像度依存性 -2012年5月6日つくば竜巻のケース-

Dependency of horizontal resolution on accumulation processes of low-level water vapor

- Case study of Tsukuba tornado -

加藤輝之(気象庁 気象研究所) Teruyuki KATO (MRI/JMA)

Synoptic situation on 6 May 2012 (Tornado day)

A cold air-mass with less than -18 degrees in Celsius at 500hPa covered almost the whole area of Japan.

Warm moist air flow towards a lowpressure system in the Sea of Japan prevailed in eastern Japan.

Surface weather map : 0900 JST

^(*)998

Moist warm air

Specific humidity at 500 m above sea level

depicted from JMA-MA

Huge water vapor at low levels made favorable conditions for initiation and development of deep convection.

1200JST

6 May

Time change of 500m-height specific humidity

depicted from JMA-MA

the Japanese Islands, and it flowed into Kanto Area.

Numerical model and experimental design

Model: JMANHM (Saito et al. 2006)					
Dynamics:	Fully compressible equations with a map factor				
Cloud physics:	Bulk-type with six water species (qv, qc, qr, qi, qs, qg)				
Convection:	Kain and Fritsch (1990) 💠 Only in 5km model				
Turbulence:	MYNN (Nakanishi and Niino 2006), Deardroff (DD, 1980)				
Surface flux:	Beljaars and Holtslag (1991)				
Horizontal grid:	5km (MYNN), 2km (MYNN), 1km (MYNN,DD), 500m (DD)				
Vertical layer:	50 layers (6 layers below 500m, model top:21.8km)				
Initial/boundary:	JMA-MA adopting a 4DVAR assimilation system				
	18JST, 5 06JST, 6				
JMA-MA Q Q Q Q Q					
NHM5km_w 🍎 🍎 🍎 🍎 🗭 Domain:2500kmx2000km					
NHM5km,2km,1km,500m 🎽 🎽 🎽 🎽 🍐 🌢 Domain:1000kmx600km					

In this study, a budget analysis of LWA is made using NHM.

Brightness temperature (IR-image) of MT-SAT

Time change of low-level water vapor amount (5km)

Time change of accumulation processes (5km-model)

Time change of accumulation processes for target air column (5km-model)

Time change of accumulation processes for target air column (5km-model)

Comparison between integrated increase and LWA for target air column (5km-model)

Sub-grid vertical transportation of water vapor (5km-model) 12 hour integrated amount

Sub-grid mixing dominates below a height of 500 m.

Depth of humid layer increases with time.

Comparison between integrated increase and LWA

Left axis: Integrated increase(mm/h) Right axis: LWA (z < 936m) (mm)

12 hour change of LWA for target air column

	500m-NHM(DD)		1km-NHM(DD)		1km-NHM	
Total (mm/12hours)	2.85	-	2.93	-	2.87	-
Kinematic change	2.11	74.3%	2.21	75.5%	1.80	62.9%
Horizontal convergence	8.79	(308.3%)	8.59	(293.2%)	9.26	(322.8%)
Vertical transportation (grid)	-0.46	(-16.1%)	-0.52	(-17.7%)	-1.58	(-55.2%)
Vertical transportation (sub-grid)	0.005	(0.18%)	0.006	(0.21%)	0.003	(0.10%)
Horizontal advection	-6.22	(-218.1%)	-5.86	(-200.2%)	-5.88	(-204.9%)
Latent heat flux	0.73	25.7%	0.72	24.5%	1.06	37.1%

Difference between MYNN and Deardroff

➡ is small for total change, but each term.

Sub-grid vertical transportation of water vapor

Vertical transportations of water vapor for target air column (12h accumulation amounts)

Vertical profiles of 12-hour accumulation amounts of water vapor for target air column

Vertical profiles of water vapor for target air column

Summary

✓Accumulation processes of low-level water vapor

Small dependency of horizontal res. & turbulence scheme on amounts However, each process is difference by tub. scheme.

Accumulation process	MYNN	Deardroff
Kinematic change due to meso trough	~2/3	~3/4
Latent heat flux from the sea	~1/3	~1/4

- Sub-grid vertical transportation (water vapor buoyancy) is limited below a height of 500m.
 Small dependency of horizontal res., but large for tub. Scheme.
- ✓ Features of vertical profile of water vapor
 Deardroff accumulates water vapor in lower layers than MYNN

対象領域のLWAに対する収支の時間変化

下層水蒸気量の時間変化(5日18時~6日6時)

下層水蒸気量の時間変化(5日18時~6日6時)

1km-NHM with MYNN

1km-NHM with Deardroff

下層水蒸気量の時間変化(5日18時~6日6時)

対象領域のLWAの12時間の変化量

	5km-NHM		2km-NHM		1km-NHM	
合計 (mm/12hours)	3.06	-	2.78	-	2.87	-
運動学的変化	1.97	64.2%	1.71	61.4%	1.80	62.9%
水平収束	9.10	(296.9%)	9.15	(329.1%)	9.26	(322.8%)
鉛直移流 (grid)	-1.50	(-48.8%)	-1.60	(-57.4%)	-1.58	(-55.2%)
鉛直移流 (sub-grid)	0.003	(0.11%)	0.004	(0.15%)	0.003	(0.10%)
水平移流	-5.64	(-184.0%)	-5.85	(-210.4%)	-5.88	(-204.9%)
潜熱フラックス	1.10	35.8%	1.07	38.5%	1.06	37.1%

水平分解能による違い(境界層スキームが同じ場合:MYNN)

▶ ほとんど差がない(水平移流を除く)

サブグリッドによる水蒸気の鉛直輸送

サブグリッドによる水蒸気の鉛直輸送

Japan Meteorological Agency

つくば竜巻 の概要 2012.5.6

つくばでの地上観測と上空の大気状態(前日との比較)

上空の大気状態は気象庁メソ解析から判断

		6日12時	5日12時		
気温	500 hPa (~ 5600 m)	-18 °C	-17 °C		
	地上	25.6 °C	25.9 °C		
気温差(地上 -	- 500 hPa)	43.6 °C	42.9 °C		
500 m 高度の 7	k蒸気量	12 g/kg	6 g/kg		
CAPE (対流有	効位置エネルギー)	2300 J/kg	-		
SREH (ストームに相対的なヘリシティー) 250 m ² /s ² 50 m ² /s ²					
環境場の鉛直シアから見積もられるストームに 貫入する水平渦度の程度を示す					
維持 上下の大きな気温差(40度以上)の変化は小さい					

下層の水蒸気量が倍増

変化

下層水蒸気量の増加と黒潮との位置関係

感度実験における海面水温の設定

対象領域のLWAの12時間の変化量

	CNTL		Max 20 °C		Minus 2 K	
合計 (mm/12hours)	3.02	-	2.17	-	2.04	-
運動学的変化	1.92	63.5%	1.33	61.5%	1.54	75.1%
水平収束	8.92	(295.3%)	5.39	(248.1%)	6.21	(303.5%)
鉛直移流 (grid)	-1.48	(-49.1%)	-0.54	(-24.7%)	-0.45	(-21.7%)
鉛直移流 (sub-grid)	0.002	(0.08%)	0.004	(0.2%)	0.004	(0.2%)
水平移流	-5.52	(-182.7%)	-3.52	(-162.1%)	-4.24	(-206.9%)
潜熱フラックス	1.10	36.5%	0.84	38.5%	0.51	24.9%

運動学的変化の寄与がMinus 2Kで増加, Max 20 °Cでは減少.

▶ 黒潮の分布が運動学的変化を強めている

水蒸気量が1g/kg減った場合の影響

CAPE: 2300 J/kg 二〉1700 J/kg(25%の減少)

標準実験-Max20℃実験(5月6日3時の予想値での差)