

Deep moist atmospheric convection in a subkilometer global simulation

Yoshiaki Miyamoto, Yoshiyuki Kajikawa, Ryuji Yoshida, Tsuyoshi Yamaura, Hisashi Yashiro, Hirofumi Tomita (RIKEN AICS)

- I. Background
- II. Experimental Settings
- III. Methodology for detection of convection
- IV. Results
- V. Conclusion

I. BACKGROUND

☆deep moist convection := "Convection"

Convection

Convection

• Element of cloudy disturbances

 Transport heat and moisture
 ⇔ Horizontal scale (Δx) ~10⁰ km
 hard to explicitly solve in <u>global models</u> (Δx~10¹ - 10² km)

← cumulus parameterization

2000~

Model development + enhancement of computer power => $\Delta x \sim 10^{0}$ km

→clouds are explicitly solved in global models ⇔ Still coarser or comparable to obs.

Regional model (Weismann et al., 1997) : Change around $\Delta x \leq 4$ km

Objective:

Reveal the dependence of the simulated convection on resolution in global model by describing the global statistical characteristics.

Experimental design

model	NICAM (Tomita and Satoh 2004, Satoh et al. 2008)
Initial state	3-day integrated results of 1-step coarser resolution
SST	NCEP analysis + nudging (Reynolds weekly SST)
land	Model adjusted produced by 5 year run
Cloud physics	NSW6 (Tomita 2008)
Boundary layer turbulence	MYNN (Nakanishi and Niino 2004, Noda et al. 2008)
Surface flux	Louis (1979)
Long and short-wave radiation	MSTRNX (Sekiguchi and Nakajima 2008)
Cumulus parameterization	

Experiments	horizontal mesh s	size (km)	initial time (UTC)	period	initial data
$\overline{\Delta 14.0}$	14.0		2012082500	12 hours	$\Delta 30.0$
$\Delta 7.0$	7.0		2012082500	12 hours	$\Delta 14.0$
$\Delta 3.5$	3.5		2012082500	12 hours	$\Delta 7.0$
$\Delta 1.7$	1.7		2012082500	12 hours	$\Delta 3.5$
$\Delta 0.8$	0.8		2012082500	12 hours	$\Delta 3.5$

Δx

integration period(12 h)

%72 h integration before producing initial fields

Computational Cost

- Nodes used: 20480 (~160000 cores)
- Wall-clock time: 53 h
- Sustained performance: 7⁸ %
- Storage: 200 TB

Experiments	horizontal mesh size (km)		initial time (UTC)	period	initial data
$\overline{\Delta 14.0}$	14.0		2012082500	12 hours	$\Delta 30.0$
$\Delta 7.0$	7.0		2012082500	12 hours	$\Delta 14.0$
$\Delta 3.5$	3.5		2012082500	12 hours	$\Delta 7.0$
$\Delta 1.7$	1.7		2012082500	12 hours	$\Delta 3.5$
$\Delta 0.8$	0.8		2012082500	12 hours	$\Delta 3.5$

Δx

integration period (12 h)

※72 h integration before producing initial fields

NICAM 870 m - 96 levels Real Case Simulation: 25 - 26, Aug., 2012

SPIRE field-3: Study of extended-range predictability using GCSRAM RIKEN / AICS: Computational Climate Science Research Team

II. METHOD OF DETECTING CONVECTION

- 1. Detect "convective grids" by ISCCP table
- 2. Determine "convective core" grids

Cumulonimbus Clouds over the Pacific Ocean Latitude: 14.3 ° N Longitude: 102.4 ° W

ISS027E035995

Step 1/2: Detect convective grids by ISCCP table

er 1999)

Step 2/2: determine convective core grids

- a) ISCCP convective grids(●)
- b) Find grids (
) at which all the surrounding 8 grids satisfy the ISCCP condition
- c) Estimate horizontal gradient of vertical velocity averaged vertically in the troposphere
- d) Convective grids () := where vertically aved w is larger than those at surrounding 8 grids

example ($\Delta x=3.5$ km)

Cutoff: ISCCP, OLR & w (GL11)

w(troposphere mean) $CI = 0.1 \text{ m s}^{-1}$ $w = 0.1 \text{ m s}^{-1}$

Cutoff: ISCCP, OLR & w (GL12)

Composited structure of convection (GL13)

Convection core grid

%transform the coordinate into the cylindrical around the core grid mean of all the detected convection symmetric around the x axis

Composite of convection (vertical velocity)

 $\Delta x \ge 3.5$ km:

- Convection is represented at <u>1</u> grid
- Little dependence on resolution
- $\Delta x \leq 1.7$ km:
 - Convection is represented at <u>multiple grids</u>
 - Intensify w/ resolution

Xtransform the coordinate into the cylindrical around the core grid

mean of all the detected convection

symmetric around the x axis

X axis is normalized by resolution

Number and distance of convection

 $\Delta x \ge 3.5$ km:

- number: increase by factor of 4
- distance: 4 grids

 $\Delta x \leq 1.7$ km:

- number: decrease in increasing rate
- distance: 5 grids

Summary

<u>Global simulation with</u> <u>a sub-kilometer</u> <u>resolution</u>

<u>Finding</u>

Convection features (structure, number, distance)

<u>change between ∆3.5 km ⇔ ∆1.7 km</u>

- Δx should be 2.0~3.0 km to resolve convection in global models

Thank you very much for your attention!

<u>Miyamoto, Y.</u>, Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro and H. Tomita, 2013: Deep moist atmospheric convection in a sub-kilometer global simulation, *Geophysical Research Letters*, **40**, 4922-4927.

Special thanks to Drs. H. Miura, S. Iga, S. Nishizawa, M. Satoh, our colleagues, and two anonymous reviewers for fruitful discussions. The authors are grateful to researchers and technical experts at RIKEN and FUJITSU for their kind help. The simulations were performed using the K computer at the RIKEN Advanced Institute for Computer Science.

SUPPLEMENT

What is the general characteristics of convection?

- Isolated convection
 - Element of amospheric cloudy disturbances
 - Transport of heat/moisture

What is the general characteristics of convection?

- □ Jorgensen and LeMone (1989): 50% of convection (core) has horizontal scale less than 1 km
- Resolution dependence
 - Weismann et al. (1997): dependence of squall line (Klemp and Wilhelmson (1979) cloud model)
 - Characteristics changes $\Delta\,x$ less than and equal to 4 km

Model (NICAM, Tomita & Satoh 2004, Satoh et al. 2008)

Global cloud-system resolving model

- Icosahedral grid
- nohydrostatic DC

Miura et al. (2007)

面積積分質量フラックス

東西風速・降水量・海面更正気圧の緯度分布

- 各解像度間に大きな差無し
- 解析値・観測値との顕著な差 無し

Skamarock (2004)

Effective resolution (~6-7Δx): それより小さい空間スケールの現象が、モデルで計算される運動エネル ギースペクトルが-5/3則から外れる解像度

- 実現象で対流の存在する間隔 < 6-7∆x
 - モデルでは現象と同様の間隔を再現できない
 →Effective resolution以上で、且つ、実現象に最も近いスケール(=6-7Δx)に最頻値が出現
- 実現象で対流の存在する間隔 > 6-7∆x
 - モデルで対流間の距離を解像可能

