Data Assimilation Experiments of Tsukuba Tornado on May 6, 2012 with the Nested-LETKF System

2014/3/7 (Fri.)

*Sho Yokota, Masaru Kunii (MRI), Hiromu Seko (MRI/JAMSTEC) The 4th Research Meeting of Ultra-high Precision Mesoscale Weather Prediction

Introduction The Case

Three tornadoes were generated in 2012/5/6, about 12:30 JST.

Seko et al. (2013)

- Two tornadoes were reproduced in the data assimilation experiment. However, the sites of the south tornado shifted about 10 km north.
- Yamauchi et al. (2012)

This Study

 The south tornado was observed by MRI Doppler Radar.

Doppler wind observed by MRI Radar is assimilated and the impact of the assimilation is clarified.

Introduction The Vortex Observed by MRI-Radar

Experimental Design About Nested NHM-LETKF

Surface (pressure), Radiosondes (wind, humidity, temperature), Planes (wind, temperature) and Wind profiler radar (wind)

- 1.875km and 350m grid

	Grid Interval	Initial Time	
Outer LETKF	15 km	5/3 09:00JST	Operational observation data of JMA (every 1 hour) are assimilated.
Inner LETKF	1.875 km	5/6 03:00JST	CTL: Only operational observation data of JMA (every 10 minutes) are assimilated. VR: Doppler wind data is also assimilated
Downscaling Experiments	1.875 km 350 m		Initial and boundary conditions are analysis of the inner LETKF in both CTL and VR.

Downscaling Experiments

Genesis of Vortices

Color: Mixing ratio of water and ice (g/kg, z*=20m) Arrows: Horizontal wind (m/s, z*=20m) Red Point: High relative vorticity area (>0.03/s, z*=20m)

\Rightarrow The vortex was generated at south edge of precipitation area.

Strength and the Path of Vortices

Time series of maximum velocity around the south vortex (z*=20m)

High relative vorticity area (>0.03/s, z*=20m)

and the path shifts to the south.

Correlation Analyisis What Decides Strength of the Vortex

Low-level moisture increases near the genesis point of the vortex. The vortex becomes stronger.

Correlation Analyisis What Decides Strength of the Vortex

Correlation Analyisis What Decides Strength of the Vortex

Correlation Analyisis What Decides the Path of the Vortex

SReH decreases at the south of precipitation area and increases at the path of precipitation area.

The vortex path shifts to the south.

Correlation Analyisis What Decides the Path of the Vortex

Summary

In the case of tornadoes in May 6, 2012, Doppler wind of MRI radar is assimilated with the Nested-LETKF system.

Results

The south vortex became close to real because low-level moisture and SReH were corrected.

⇒ Correction of wind and moisture at low level is effective to reproduce vortices.

Future Plan

Higher resolution LETKF, more members, more observations (Ground Observation, Reflectivity, Dual-pol information of Radar and so on)

⇒ to improve the accuracy of the reproduction
⇒ to clarify the genesis mechanism of tornadoes