

Use of a global cloud-resolving model NICAM for MJO studies

Yokohama, Japan, Nov. 26, 2008

Overview

•Outline of NICAM

•Global Cloud Resolving Model •NICAM (Nonhydrostatic **ICosahedral Atmospheric** Model)

High-resolution simulation

•A week run

Seasonal march simulation

•Boreal summer, 2004

•Myanmar cyclone exp., 2008

Possible use of NICAM for MJO

studies

NCEP/CPC IR

NICAM 7km, OLR

Miura et a.(2007), Nasuno et al.(2008

NICAM simulation: **MJO** Experiment

Horizontal grid spacing:

14 km, 7 km, 3.5 km

Vertical domain

0 m ~ 38km, 40-levels (stretching grid) Integration:

7km, 14km runs: 30 days from 15 Dec 2006

3.5km run: 7 days from 25 Dec 2006

Initial conditions:

Interpolated from NCEP tropospheric analyses (6 hourly, 1.0x1.0 degree grids) 2006-12-15 00:00:00 (14km and 7km runs) 2006-12-25 00:00:00 (3.5km run)

Boundary conditions:

Reynolds SST, Sea ICE (weekly data) ETOPO-5 topography, Matthews vegetation UGAMP ozone climatology (for AMPI2)

Miura et al. (2007, Science)

Comparison with split window analysis

Inoue et al.(2008,to be submitted)

GOES-W high-level clouds

(split window)

GOES-W High-level Cloud OOUTC 26 Dec, 2006

NICAM 3.5km Cloud Ice+snow

Split window analysis: Inoue (1987 JGR,1989 JMSJ) Classification by Tbb difference between $11\mu m$ and $12\mu m$

Calipso/CloudSat simulated reflectivities by COSP(Courtesy of M.Webb)

Cold pool analysis

Frequency of cold pools: Number of events of temperature drop > 1.5K/90min

Diurnal variation Off shore in the afternoon Westward migration north of Australia

Sato et al.(2008, submitted)

Observational temperature drop

0° 156°E

CCSR

Super cloud cluster as a gigantic squall line

"Cold pool dynamics" multi-scale interaction both in time and scale

CCSR Hovmoller of Precipitation: NICAM vs TRMM (Jun - Aug, 2004)

Oouchi et al.(2008,submitted)

Hierarchical convections embedded in SCC

CCSR

SIMULATIONS OF THE MONSOON ONSET AND CYCLONES

Nargis, Myanmar cyclone, Apr. 2008 by W. Yanase (CCSR, Univ. of Tokyo) H. Taniguchi(FRCGC)

MJO signal

5°S-5°N, precipitable water

NCEP reanalysis; black circle: TC genesis

MJO Index (BMRC)

Latitude-time diagram

サイクロンが発生 (他の年でも見られる)

NICAM experiments

- Global Cloud Resolving Simulations
 - Dx=14km
- <u>Setched-model</u>
 - Dx=14km, 7km
 - Initial condition
 - 12h interval between 24-26 Apr
 - cf. Nargis genesis (12UTC, 27 Apr.)
 - Weekly SST
 - Cloud microphysics, NSW6

Dependency on Initial condition, resolution, domain Init. 12UTC, 25 Apr., Analysis 12UTC 2 May, SLP

JCDAS再解析

Global 14km, JMA init.

Stretch14km, NCEP init.

Stretch14km, JMA init

Stretch7km, NCEP init.

Stretch7km, JMA init

・サイクロンは発生するが、経路は再現されず
・初期データ依存 > 解像度・領域依存

un Senermon Comáte Model

Initial conditon dependency Stretch14km; 12UTC 2 May, SLP

Potential of Cyclogenesis, 2008

- Global 14km exp.: ~1month: several cases
- Global 7km exp., ~1month: a few cases
- Global 3.5km exp., ~1week: one case
- Stretch 7km(14km) exp.: ~1 week
 - many sensitivity studies
- Global or Stretch?
 - Remote effects: wave propagations
- Ocean, Land interactions

Possible use of NICAM for MJO studies

<u>A few months simulations</u>

- CTL: 7km, 1-3 months
- Ensemble with 14km
- Different initial conditions: 1 May, 1 Jun, 1 July, ...
- Summer and winter
- MJO

• Shorter snap shot runs

- 3.5km, a week
- "Nature run"
- Anvil clouds, cold pool dynamics: meso-circulations
- Comparison with satellite obs
- Diurnal cycle and multi-scale interaction

