LWD data processing note

31st December, 2012
LSS Yoshinori Sanada and Moe Kyaw

Depth index
mBRT: meter below rotary table (rig floor)
mbsf: meter below sea floor
MSL: mean sea level

Well summary
Expedition: 338
Hole: C0021A
Location: 33°10.0482'N, 136°39.8454'E
Water Depth: 2969.0mBRT (2940.5mMSL)
Rig floor to MSL Elevation: 28.5 m
Total depth: 3263.5mBRT (294.5mbsf)
Last casing: N/A
Bit size: 12"-1/4"-PDC
LWD BHA: geoVISION-8, arcVISION-8, Telescope
Mud type: Seawater
Mud weight: 1.04
Mud resistivity: N/A
Mud filtrate: N/A
Mud cake: N/A
Max hole deviation: 0.26 deg @ 2977.21mBRT(8.21mbsf)

Operation and logging summary
Date: December 26-27, 2012 (RIH to recover LWD)
After POOH till 300m above the seafloor at C0018B, the ship drifted 2km to C0021A.
For the 1st spud, the mud line was not observed in real time data, because it was 10m shallower than we expected. The mud line was observed at 2969.0mBRT in the 2nd spud at 30m/h from 2968mBRT. We washed down (no rotation) till 3009mBRT (40mbsf) to avoid bit walk, then started drilling.
No repeat log.

LWD configurations
Telescope: 1Hz, 2bps (to prevent cold start)
Data processing
LWD data were downloaded from the recorded memory in each tool after retrieval. The raw data were delivered by the Schlumberger field engineers to the Logging Staff Scientist (LSS). The Co-Chiefs, EPM and LSS, confirmed the seafloor at 2969.0 mBRT based on the natural gamma ray and resistivity curves extracted from the memory data. Data were recorded with reference to the rotary table (mBRT), but were also provided as referenced to the seafloor (mbsf = mBRT – 2969.0). Shallow, medium, and deep resistivity borehole images were generated using GeoFrame 4.4 from Schlumberger. The static resistivity images were processed with 128 colors gradation, and the dynamic resistivity images were processed with 128 colors gradation and a window length of 1 m. All logging data were uploaded to the onboard shared server, and distributed to the Shipboard Science Party.

Logging data quality control
Data quality was checked at three points: during data acquisition by monitoring the real-time data, validation during data processing, and through an inspection of the final, processed data. The LSS and logging scientists assessed the real-time drilling parameters, ROP (Rate of penetration), RPM (Rotation per minute), SWOB (Surface weight on bit), ECD (Equivalent circulating density), DHAT (Downhole annular temperature), Stickslip, DWOB (Downhole weight on bit), DTOR (Downhole torque) using the witness sheets (see Expedition 338 Methods). Data from the downhole tools were assessed in terms of realistic values for the known lithology of the drilled interval. The overall quality of the processed logging data was determined to be good. Due to no rotation during wash down and drilling with low RPM, poor quality resistivity images were recorded until 3017.0 mBRT (48.0 mbsf). Sharp horizontal lines, artifacts from ship heave and pipe vibration, are observed throughout the processed resistivity images. Missing data due to high stick-slip (more than 300 c/m) are also observed. Developing breakout was observed after pipe connections at 3070.5mBRT (101.5mbsf), 3108.0mBRT (139.0mbsf), 3146.0mBRT (177.0mbsf), 3184.5mBRT (215.5mbsf), and 3222.5mBRT (253.5mbsf).

Contacts:
CDEX LSS: cdex.lss@gmail.com
Yoshinori Sanada: sanada@jamstec.go.jp
Moe Kyaw: moe@jamstec.go.jp