Personnel Resources

Tadahiro NAGANO

Standard Disclaimer

The use of and reliance upon this recorded-data by the herein named company (and any of its affiliates, partners, representatives, agents, consultants and employees) is subject to the terms and conditions agreed upon between Schlumberger and the Company, including: (a) Restrictions on use of the recorded-data; (b) Disclaimers and waivers of warranties and representations regarding company's use and reliance upon the recorded-data; and (c) Customer's full and sole responsibility for any inference drawn or decision made in connection with the use of this recorded-data.
Table of Contents

Executive Summary ... 4
Contextual Information .. 4
Data processing and/or interpretation .. 4
 Input Data Acceptance Criteria .. 4
 Processing Steps .. 6
 Output Data .. 6
Output Data Evaluation and Quality Review .. 6
Terms and Definitions .. 8
References ... 8

Table 1. Input and output data for the GVR Inversion ... 6
Executive Summary

This report is for the GeoVISION invasion processing within GeoFrame. The inversion is carried out using the producer DLIS with RAB Inversion in GeoFrame 4.5 DC-6. Processed data was acquired at JFAST C0019B.

Contextual Information

The GeoVISION Resistivity tool (GVR) outputs 5 resistivity curves, 3 from button measurements, one RING measurement and one Bit measurement. The depth of investigation (DOI) of the measurement increases from the shallow button to the bit measurement. This array of resistivities can be inverted to simultaneously solve for up to four formation characteristics: formation resistivity (Rt), invaded zone resistivity (Rxo), Diameter of Invasion (Di) and Hole size (Dh). The button resistivities can be used as an average measurement around the borehole or as directional measurements.

The translatory separation of resistivity curve from different depth of investigations may indicate the invasion profile. No separation means ‘no invasion’ or ‘significant washout’. Washout case can be identified by the gap between bit resistivity and the others.

Logging area is located around trench. Pelagic, channel sediments and igneous rocks may be observed. Drilling pass is 858.5 m under 6883.5 m water column.

Data processing and/or interpretation

Input Data Acceptance Criteria

In general, the image data quality is affected by incomplete rotation. Image interruptions are caused by higher angular acceleration indicator (AAI) with lower rotation per minute (RPM). These conditions are observed at shallower interval than 7180 m and at the depth of drill pipe connected. Azimuthal data continuity looks enough to pick bed boundaries and faults. Average resistivity arrays are less affected by incomplete rotation.
Fig. 1 Incomplete rotation at shallower interval
Processing Steps

Data was loaded and quality controlled within GeoFrame. Average measurement invasion inversion was carried out. Because the separation did not occur, there is no clear difference between the invasions in individual layers. Major input/output curves and parameters are summarised in table 1.

Table 1. Input and output data for the GVR Inversion

<table>
<thead>
<tr>
<th>Curves</th>
<th>Input</th>
<th>Output</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>RBIT</td>
<td>Rt</td>
<td>Rm</td>
</tr>
<tr>
<td>Output</td>
<td>RING</td>
<td>Rxo</td>
<td>0.29 ohm m</td>
</tr>
<tr>
<td></td>
<td>BDAV</td>
<td>Di</td>
<td>@ 2 degC</td>
</tr>
<tr>
<td></td>
<td>BMAV</td>
<td>Dh</td>
<td>12 degC</td>
</tr>
<tr>
<td></td>
<td>BSAV</td>
<td>MRES</td>
<td></td>
</tr>
</tbody>
</table>

Output Data

Outputs of the GVR Inversion processing are summarised in table 1. The following digital and graphical files were generated:

- CDEX_JFAST_GVRinversion.dlis
- CDEX_JFAST_GVRinversion200.pds
- CDEX_JFAST_GVRinversion500.pds

Output Data Evaluation and Quality Review

As it is mentioned above, there are only a few separations on resistivity inputs. This implies invasions did not occur frequently. Generally, only shallow button resistivity reads smaller than the other DOI resistivities and it could be caused by standoff changing. It is clear that longer ‘time after bit’ make the borehole be washed out by mud circulations.
Fig. 2 Inversion output. RTIM (time after bit of RING resistivity) is shown on linear scale.
Terms and Definitions

AAI
Angular Acceleration Indicator

BDAV
Deep button average resistivity

BHT
Bottom Hole Temperature

BMAV
Medium button average resistivity

BS
Bit Size

BSAV
Shallow button average resistivity

CRPM / RPM
Collar Revolutions Per Minute

Di
Diameter of invasion

ECAL / HD
Electrical caliper - Hole Diameter

FLAG
Inversion Flag

GR_RAB / GR
Gamma Ray Error

GVR
GeoVISION Resistivity

LWD
Logging While Drilling

MRES
Mud Resistivity

MST
Mud Sample Temperature

RBIT
Bit resistivity

RING
RING resistivity

Rm
Mud resistivity

Rmf
Mud Filtrate Resistivity

Rt
Formation Resistivity

RTIM / TAB_RES_RING
RING resistivity time after bit

Rxo
Flushed Zone Resistivity

Rw
Formation Water Resistivity

References