		V
	A	and the second
		100
	The second	
· F		
	Company:	JAMSTEC
-	Well:	C0019B
	Field:	JFAST
	State:	
-0 7	Country:	JAPAN
	API#:	
	Job#:	Constant of Constant over 1
	Report Date:	10-May-12
	Analyst:	Tadahiro NAGANO
	Client:	CDEX
-		

Data & Consulting Services

Schlumberger

JAMSTEC GeoVISION Inversion

LWD_INVASION:

Other company, product, and service names are the properties of their respective owne Copyright © Schlumberger 2009. All rights reserved. 09-DC-0047-C **Personnel Resources**

Tadahiro NAGANO

Standard Disclaimer

The use of and reliance upon this recorded-data by the herein named company (and any of its affiliates, partners, representatives, agents, consultants and employees)is subject to the terms and conditions agreed upon between Schlumberger and the Company, including: (a) Restrictions on use of the recorded-data; (b) Disclaimers and waivers of warranties and representations regarding company's use and reliance upon the recorded-data; and (c)Customer's full and sole responsibility for any inference drawn or decision made in connection with the use of this recorded-data.

Table of Contents

Executive Summary	4
Contextual Information	
Data processing and/or interpretation	4
Input Data Acceptance Criteria	4
Processing Steps	
Output Data	
Output Data Evaluation and Quality Review	
Terms and Definitions	8
References	8
Table 1. Input and output data for the GVR Inversion	6

Executive Summary

This report is for the GeoVISION invasion processing within GeoFrame. The inversion is carried out using the producer DLIS with RAB Inversion in GeoFrame 4.5 DC-6. Processed data was acquired at JFAST C0019B.

Contextual Information

The GeoVISION Resistivity tool (GVR) outputs 5 resistivity curves, 3 from button measurements, one RING measurement and one Bit measurement. The depth of investigation (DOI) of the measurement increases from the shallow button to the bit measurement. This array of resistivities can be inverted to simultaneously solve for up to four formation characteristics: formation resistivity (Rt), invaded zone resistivity (Rxo), Diameter of Invasion (Di) and Hole size (Dh). The button resistivities can be used as an average measurement around the borehole or as directional measurements.

The translatory separation of resistivity curve from different depth of investigations may indicate the invasion profile. No separation means 'no invasion' or 'significant washout'. Washout case can be identified by the gap between bit resistivity and the others.

Logging area is located around trench. Pelagic, channel sediments and igneous rocks may be observed. Drilling pass is 858.5 m under 6883.5 m water column.

Data processing and/or interpretation

Input Data Acceptance Criteria

In general, the image data quality is affected by incomplete rotation. Image interruptions are caused by higher angular acceleration indicator (AAI) with lower rotation per minute (RPM). These conditions are observed at shallower interval than 7180 m and at the depth of drill pipe connected. Azimuthal data continuity looks enough to pick bed boundaries and faults.

Average resistivity arrays are less affected by incomplete rotation.

Fig. 1 Incomplete rotation at shallower interval

Processing Steps

Data was loaded and quality controlled within GeoFrame. Average measurement invasion inversion was carried out. Because the separation did not occurred, there is no clear difference between the invasions in individual layers. Major input/output curves and parameters are summarised in table 1.

Curves						
Input	RBIT	RING	BDAV	BMAV	BSAV	
Output	Rt	Rxo	Di	Dh	MRES	
Parameters						
Rm	0.29 ohm m	@ 2 degC	BHT	12 degC		
Curve Separation	0.15	Continuity Multiplier	1.0	Rt - RDeep	0.5	
Inversion Cut Off Channel	GR	Cut Off Value	75	Rw @ Temp	0.28@10	

Output Data

Outputs of the GVR Inversion processing are summarised in table 1. The following digital and graphical files were generated:

CDEX_JFAST_GVRinversion.dlis CDEX_JFAST_GVRinversion200.pds CDEX_JFAST_GVRinversion500.pds

Output Data Evaluation and Quality Review

As it is mentioned above, there are only a few separations on resistivity inputs. This implies invasions did not occur frequently. Generally, only shallow button resistivity reads smaller than the other DOI resistivities and it could be caused by standoff changing. It is clear that longer 'time after bit' make the borehole be washed out by mud circulations.

Fig. 2 Inversion output. RTIM (time after bit of RING resistivity) is shown on linear scale

Terms and Definitions

AAI BDAV BHT BMAV BS BSAV CRPM / RPM Di ECAL / HD FLAG GR_RAB / GR Error GVR LWD MRES MST RBIT RBIT RING Rm Rmf Rt RTIM / TAB_RES_RING	Angular Acceleration Indicator Deep button average resistivity Bottom Hole Temperature Medium button average resistivity Bit Size Shallow button average resistivity Collar Revolutions Per Minute Diameter of invasion Electrical caliper - Hole Diameter Inversion Flag Gamma Ray Inversion Error GeoVISION Resistivity Logging While Drilling Mud Resistivity Mud Sample Temperature Bit resistivity RING resistivity Mud Filtrate Resistivity Formation Resistivity RING resistivity time after bit
RTIM / TAB_RES_RING Rxo Rw	RING resistivity time after bit Flushed Zone Resistivity Formation Water Resistivity
	•

References

"A Novel Inversion Method for Interpretation of a Focused Multisensor LWD Laterolog Resistivity Tool" Li, Rasmus, and Cannon. SPWLA Annual Conference, 1999.