BMKG PROPOSAL FOR YMC YMC IMPLEMENTATION PLAN WORKSHOP JAKARTA, 24–26 NOVEMBER 2015

Prof. Dr. Edvin Aldrian

Director of Center for Research and Development - BMKG

Email: edvin.aldrian@bmkg.go.id

OUTLINE

- Introduction
- BMKG Proposal
 - Objectives
 - Outcomes
 - Research Details
 - Observations / Field Campaign
 - Instruments
 - Current instruments on R&D Center

INTRODUCTION

YEARS OF THE MARITIME CONTINENT

It is an international framework for international collaboration on field observations and modelling

The aim of YMC: To understand the role of the Maritime Continent (MC) in the global weather-climate continuum

KEY PROCESSED

- Ocean-Atmosphere-Land interactions over the coastal upwelling & inland regions
- Modulation of MJO propagation
- Effect of ITF and mixing onto SST distribution
- Diurnal cycle of convective activity
- Aerosol and their interaction with clouds
- Monsoons
- Troposphere-stratosphere interaction and dehydration process in the tropical tropopause layer (TTL)

BMKG RADAR NETWORK

BMKG

BMKG AWS NETWORK (176 LOCATIONS)

BMKG RADIOSONDE SOUNDING NETWORK

13 (2013), 5 (2014), 2 (2015) Stations

BMKG PROPOSAL

OBJECTIVES

- To gain a comprehensive understanding of: Local circulation,
 - > Sea interaction in the Indonesia MC,
 - > Diurnal precipitation and cloud cycle,
 - > MJO cycle and variability,
 - > Dipole Mode (DM) and ENSO,
 - > Quasi-Biennial Oscillation (QBO),
 - > Tropospheric Biennial Oscillation (TBO),
 - > Monsoon,
 - > ITF transport.

OBJECTIVES

- 2. To strengthen weather and climate modelling on Indonesia MC using assimilation with observational data and be able to simulate daily to weekly extreme conditions.
- 3. To develop a monitoring system of the ITF and its influence on weather/climate formation and SST diurnal cycle during active and nonactive MJO phases.

OUTCOMES

- Developing a monsoon and MJO detection system
- Assessing Mesoscale Convective System (MCS) characteristics
- Assessing aerosol characteristics in the IMC and its impact to climate
- Understanding SST diurnal cycle related with active and nonactive MJO phases
- Acquiring information on object propagation for Search and Rescue (SAR) operation and pollutant trajectories
- Establishing WRF-DA based weather prediction system which assimilated with radio sonde, satellite, and synoptic data
- Acquiring information on real time surface wind, wave, and current
- Enhancing the understanding of upwelling and developing a monitoring system of the ITF

RESEARCH DETAILS

- 1. Detection of monsoon onset and withdrawal
- 2. MJO: prediction and impact assestments
- Mesoscale Convective System: better understanding of MCS characterictics at each phase & impact to wind and precipitation
- 4. Improving model prediction skill: how to assimilate observation data into the model
- 5. Wave propagation: will be studied by using HF coastal radar system
- 6. Enhancement of upper air observations: increase the quantity of upper air observation
- 7. Aerosol and its impact to climate

RESEARCH DETAILS

- Mainly monsoonal
- Three distinct rainfall climate regions

January

Onset Dates of Asian Summer Monsoon

Dry Season onset (TRMM data 1998–2010)

Rainy Season onset (TRMM data 1998-2010)

Dry Season Onset Prediction 2015

KETERANGA

Wilayah Sudah Masuk Musim Kemarau

Non ZOM

UPDATE PRAKIRAAN AWAL

MUSIM KEMARAU 2015

Updated Mei 2015

PMKC

RADAN METEOROLOGI KLIMATOL

KETERANGAN Wilayah Belum Masuk Musim Kemarau ANALISIS PERKEMBANGAN AWAI **MUSIM KEMARAU 2015** Non ZOM 0 175 350 ndated Dasarian I Mei 2014 SUMBER DATA: . Prakiraan Awal Musim Kemarau 2015 APR II Peta Rupa Bumi Skala 1 : 1.000.0 The "shifting" between "initial" seasonal onset prediction and the "real" one pose a challenge

to the Agency, not only concerning the **methodology** but also the way how to disseminate this correctness timely and properly to end users and interface institutions;

Average percentile of daily rainfall in Indonesia

Wet season onset (Staklim Negara)

Notes:

* Falls on the same year-- 2010 wet season all yearlong

Year	True Onset		BMKG	
	Start	End	Start	End
1999/2000	29	17	29	11
2000/2001	31	17	31	11
2001/2002	36	11	36	8
2002/2003	31	13	31	7
2003/2004	26	9	26	9
2004/2005	32	12	32	11
2005/2006	28	15	28	13
2006/2007	3*	11	3*	11
2007/2008	29	10	35	9
2008/2009	33	15	33	10
2009/2010	36		11*	
2010/2011		15		3
2011/2012	29	14	29	9
2012/2013	34	21	34	21
2013/2014	35	14	35	9

Precipitation characteristics: Changes in diurnal cycles

- Mean diurnal cycle: peaks in the late afternoon and a minimum before noon
- A shift in the afternon rainfall into the evening (preceded by a depletion during late afternoon precipitation in the recent time)
- The morning precipitation peak becomes increasingly more pronounced as time proceeds, leading to a semi-diurnal pattern
- A considerable maximum temperature increase during day-time by as much as 1.8°C between 1901 - 1910 to 1971 -1980, while the minimum night - time temperature increases only by 0.5°C
- In contrast, the minimum night---time temperature increase between period 1971—1980 to 2001-2010 is pronounced with about 2°C
 - \rightarrow urbanisation? UHI?

Source: Siswanto et al. (2015)

Change of rainfalls ratio in wet season to total (east Java)

- Higher risk of flood and drought
- Quasi Biennial oscillation is prevalent

Aldrian and Djamil 2008, Intl J Climatol

El Niño impact episode

Ensemble El Niño events during 1960-1991 against climatology

La Niña impact episode

OBSERVATION / FIELD CAMPAIGN

- Upper-air observations
- Surface weather observations (rainfall, temperature, humidity, solar radiation, pressure, and wind direction and speed)
- Ocean current observation
- Ocean wave (significant wave and directional spectra)
- Ocean currents observation
- Sea surface temperature observation

INSTRUMENTS

- 1. Seaglider [for observation in Karimata Strait]
- 2. Ship charter
- 3. Radiosonde
- Rawinsonde [will be launched 4 times per day; launching sites: Surabaya, Kupang, Natuna, Ambon, Manado]
- 5. Portable Weather Station (PWS)
- 10 (ten) Automatic Weather Station (AWS) [station sites: Pekanbaru, West Sumatera, Jakarta, Pontianak, Balikpapan, Biak, Langkat, South Aceh, Southeast Aceh (Bukit Barisan Mountains), Pematang Siantar]

INSTRUMENTS

- 7. 4 (four) High Frequency Coastal Radar [sites: Bengkulu, West Kalimantan, South Sulawesi, and northern coast of Java]
- 8. 5 (five) coastal buoys [sites: Karimata Strait, central part of Java Sea, central part of Makassar Strait, south coast of Java, and Banda Sea]
- 9. Sun Photometer CIMEL Electronique
- 10. 5 (five) Sun-Photometer Handheld Microtops II Solar Light, sites: Palangkaraya, Pontianak, Jambi, Sorong, and Makassar
- 11. Pyrheliometer
- 12. High Performance Computing Server (HPC Server)
- 13. Data storage

INSTRUMENTS ON R&D CENTER

Current

On development phase

MINI WEATHER RADAR X BAND

INSTRUMENTS ON R&D CENTER

WAVE RECORDER

WEB BASED MULTI GAS SENSOR (CO, CO2, NO2, SO2, TEMP, RH)

SOIL HEAT FLUX METER

RADIOSONDE SENSOR

Thank you

