Atmospheric composition observations during YMC from a new research station on Palau

Chemical troposphere/stratosphere coupling in the Maritime Continent

Markus Rex

Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research Potsdam, Germany

Earth's Atmosphere

Stratosphere: ~10% of the air

Only roughly represented in most Earth System Models But includes components relevant for surface climate:

- Stratospheric ozone layer
- Stratospheric aerosol

Troposphere: ~90% of the air

Earth System Models focus on this layer.

F**RED-WEGENER-INSTITUT** LMHOLTZ-ZENTRUM FÜR POLAR-D MEERESFORSCHUNG YMC workshop, Jakarta, 25 November 2015

Picture: Nasa

Stratospheric bromine

Tropical mean stratospheric aerosol

update of Vernier et al., 2011

The "OH shield"

Transport into the Stratosphere

Geographical distribution of LCPs NH winter 2000/2001

Results from the fully Lagrangian ATLAS model, Wohltman&Rex, 2009; Wohltmann et al. 2010 Krüger et al., ACP, 2008

What determines OH?

Major source of HO_x in "clean" (hydrocarbon poor) air: $O_3 + hv (\lambda < 340 nm) \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow OH + OH$

=> In clean air OH depends mainly on ozone (and NO_x)

Processes at stratospheric entry point in NH winter

Rex et al., ACP, 2014

Processes at stratospheric entry point in NH winter

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Processes at stratospheric entry point in NH winter

Longer term picture

TES tropospheric ozone column

StratoClim annual meeting, 27-29 October 2015

StratoClim Planned field activities

StratoClim annual meeting, 27-29 October 2015

StratoClim : Ground stations

Tropical ground station:

- Location: Palau (close to center of warm pool)
- ~2 years of initial operation during 2016 2018
- Instrumentation starting Jan 2016:
 - Fourier Transform Infrared Spectrometer
 - Ozonesondes (ECC)

starting mid-2016:

- Improved ECC sondes for better detection limit
- Water vapour sondes (CFH)
- Backscatter sondes (COBALD)
- Microlidar
- Multi-wavelength aerosol & cloud lidar (ComCAL)

Fourier Transform Infrared Spectrometer (FTIR)

Container:

length: 20 feet weight: 6-7 tons

Instrument:

Bruker IFS 120/5-M)

Bruker solartracker

Measurements:

spectral coverage: $2000 - 10000 \text{ cm}^{-1} (5 - 2 \mu \text{m})$ resolution: 0.02-0.005 cm⁻¹

Trace gases:

OCS, CO₂, CH₄, N₂O, HCN, CO, C₂H₆, C₂H₂, CH₂O, H₂O, O₃, HCI, NO₂, HF black: total columns red: profiles (~2-4 independent layers)

Compact Cloud Aerosol Lidar (ComCAL)

Laser:

Nd:YAG 1064nm, 532nm, 355nm Power: with 65mJ, 180mJ, 120mJ respectively Pulse rate: 20Hz

Telescope:

Newton, diameter: 40cm Focal length=1.2m Field of view 0.83mrad

Wavelengths:

1064nm, 532p, 532s, 355p, 355s (p and s: polarization parallel and perpendicular) Spectrum from 370nm - 430nm in 32 channels (including Raman scattering from N2 at 487nm and water vapor at 407nm)

Vertical range:

0.7 - 20km

=> Detection (and discrimination) of cirrus, subvisible clouds and aerosol

Status of Palau station

- Visit to Palau in 2014:
 - Permissions from Palau government obtained
 - Memorandum of understanding with Palau Community College (PCC) signed, agreed on location of the station on the PCC campus
- Container with instruments will arrive in Palau on Nov. 30
 Technicians on Palau to set up station: Now to mid-December
- Opening of station January 2016

Conclusions

- Ozone below the detection limit of ECC ozonesondes suggest a pronounced minimum of OH throughout the troposphere over the tropical West Pacific.
- Such an "hole" in tropospheric OH levels cause lifetimes of key tropospheric species to be substantially longer over the tropical West Pacific than in other parts of the tropics.
- This region of the globe may therefore provide a more efficient pathway for shorter lived biogenic species and for SO₂ to reach the stratosphere than currently thought.
- Longer term measurements of atmospheric composition are needed in this region.

