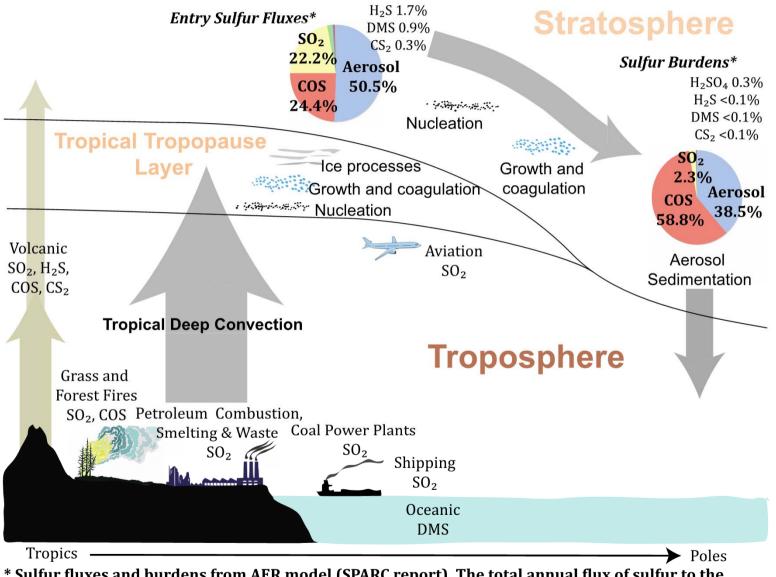
RV Investigator sea-time proposal for the Australian Monsoon period 2017/2018 - Understanding biogenic emissions in the Maritime Continent

R. Schofield, R. Robinson, M. Keywood, A. Protat, A. Johnson, D. Callahan, Z. Ristovski, N. Harris, J. Monty, M. Hamilton, C. Murphy (Paton-Walsh), M. Brown, T. Lane, Y. Huang, S. Tegtmeier, B. Quack, K. Krüger

Overview


- Motivation
- Science plan
- Science objectives
- Sampling methodology
- Summary

Motivation

- Biogenic production of short-lived gases
- Air-sea fluxes
- Oxidative capacities (Rex et al., 2011)
- Bromine budget: stratospheric ozone
- Sulfur budget: aerosols / clouds
- Convective process delivery to the stratosphere
- Validation

Ocean – Air-sea flux – Convection

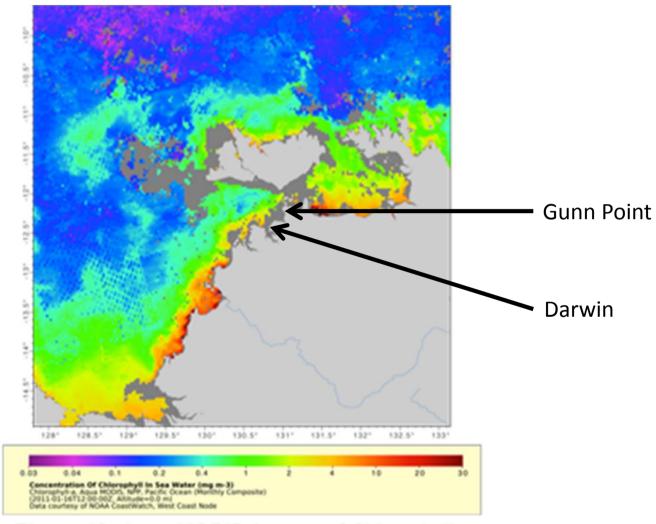
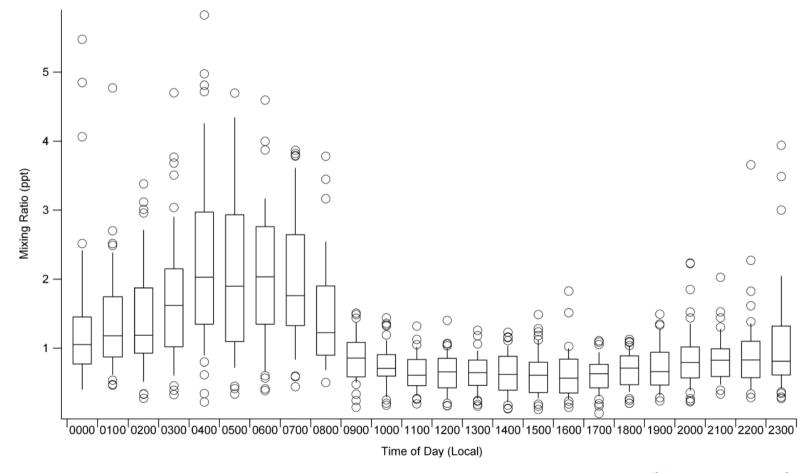
* Sulfur fluxes and burdens from AER model (SPARC report). The total annual flux of sulfur to the stratosphere is 128.9 x 10⁹ g, balanced almost exclusively by polar aerosol removal via sedimentation. The total stratospheric burden of sulfur is 485.9 x 10⁹ g of sulfur.

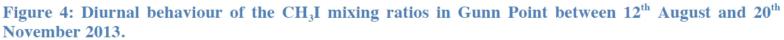
Sea-time proposal Nov/Dec 2017

Ocean objectives

- Collect micro-structure, current, nutrient concentration, and hydrographic data throughout the water column
- Conduct oceanic observations of halocarbons, trace gases and algal community
- Collect data for verification and improvement of mixing parameterizations for ocean models

Algal production in the Monsoon

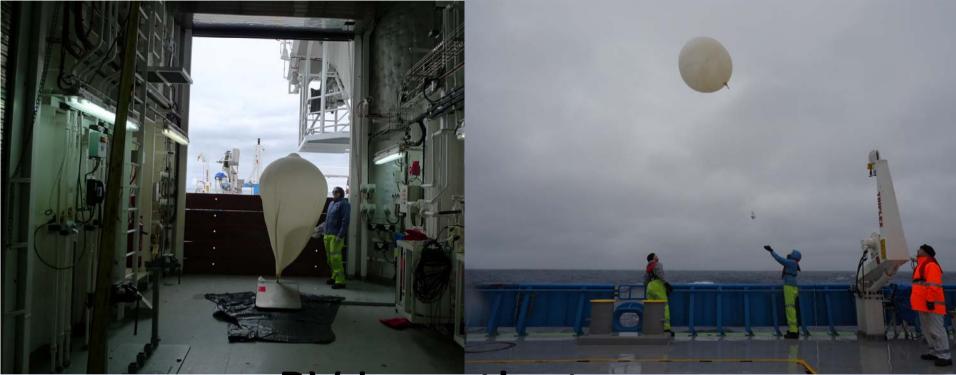




Figure 13: Aqua MODIS images of Chlorophyll distribution off the coast of Darwin during the wet (2011-01-16) season.

Atmospheric objectives

- Establish the sea-air fluxes, boundary layer ventilation and convection for trace gas delivery from the ocean to the stratosphere
- Conduct atmospheric halocarbon, sulfur, aerosol and greenhouse gas observations
- Quantify the biogenic contribution to cloud condensation nuclei in the region

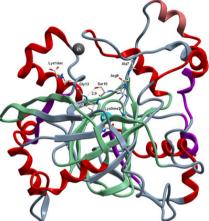
Methyl iodide diurnal cycle



Evelyn Heather Holland, Cambridge University, Masters thesis, 2015

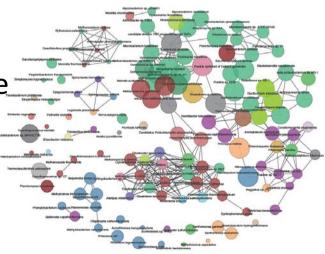
Validation / Modeling objectives

- Characterize tropical deep convection and validate the MNF radar against land based operational weather radars and Gunn Point CPOL research radar
- Validate MNF atmospheric chemistry observations against Gunn Point Tropical atmospheric research station
- Provide biogenic emissions for coupled chemistry climate models and test convective parameterizations and stratospheric ozone implications


DREG(SWL 5T-10A

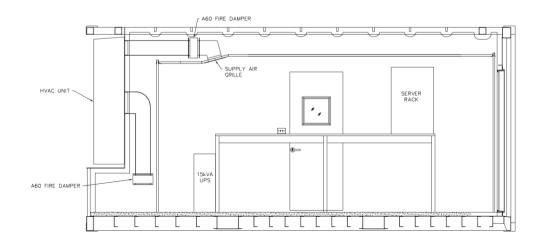
RV Investigator

TRIPLET


Ocean sampling

Instrument	Observations	
Lowered Acoustic Doppler Current Profiler (LADCP)	Vertical shear in the horizontal velocities and dissipation	0
CTD – 24-bottle rosette	Water samples at 24 depths for halocarbon, DMS, Radon and GHG concentrations and biology for microbial analysis	•
Microstructure vertical profiler	Mixing in various wind stress conditions	

Metagenomic and molecular analysis to identify genefunction


Culturing - environmental stresses that enhance gaseous production (parameterizations)

Atmospheric composition and dynamics

- Shipboard suite of composition observations
- AIR-BOX Mobile atmospheric chemistry laboratory
- Radar, Lidar, precipitation, soundings

AIR-BOX Instruments

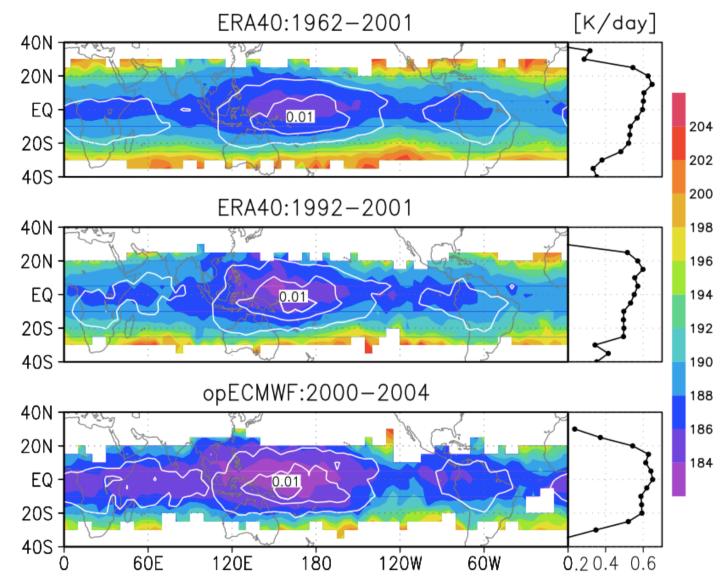
Instrument	Observations	Contact(s)
Chemical Ionization Mass Spectrometer - CIMS	Ions in aerosol phase: sulfuric acid derivatives, ammonia, and organic ions and aerosol precursor gases. OH/HO2	Zoran Ristovski, Peter Nelson
FTIR in situ trace gas analyser	In-situ continuous measurement of CO2, CH4, CO, N2O, δ13C in CO2, δD-H2O, δ18O in H2O	Dave Griffith, Clare Murphy
UV/Vis Spectrometer MAX- DOAS including Direct-sun	Solar Spectra in UV/Vis (daytime only): many oxidants and oxidation products BrO,IO, NO ² , O ³ , HCHO, CHOCHO, OCIO, SO ² , H ² O, O ⁴ , aerosol	Robyn Schofield, Steve Wilson
Meteorological – HOBO U30 Weather Station	Meteorological data	Steve Siems
Mini Micro Pulse Lidar System (532 nm)	Continuous aerosol and cloud profiles up to 10km. Boundary layer height defined continuously.	Robyn Schofield, Simon Alexander
In-situ Radon detector	Radon - a radioactive reliable tracer of land contact	Alastair Williams
Aurora 4000 Nephelometer with PM2.5 Inlet	Measures the concentration of particulates within aerosols using the reflective properties (in-situ)	Melita Keywood
Multi-Angle Absorption Photometer	Aerosol optical absorption properties of PM2.5 and PM10 particles	Melita Keywood
HIVOL particulate sampler and rain gauge	PM2.5, PM10 or TSP particles on filters. Subsequent ICPMS analysis for iron (weekly)	Andy Bowie

Identified guest instruments

Instrument	Observations	Contact(s)
NOx	In-situ NOx	Clare Murphy
Ozone	In-situ Ozone	Clare Murphy
Mercury suite	Elemental, reactive and particulate mercury	Peter Nelson
FTS - direct sun	CO ₂ , CH ₄ , HDO, HCl etc total column measurements	Dave Griffith
Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS)	Aerosol composition	Branka Miljevic
NAIS	Aerosol composition - particles: ~2 to 40 nm, ions: 3.2 to $0.0013 \text{ cm}^2/\text{V/s}$, (equivalent size range: 0.8 to 40 nm)	Zoran Ristovski
Ultrasonic 3D anemometer	High resolution winds resolving turbulent processes and surface heat fluxes	Jason Monty
Custom built humidity sensor	High resolution	Jason Monty
Sodar	Vertical profiles of wind and temperature	Melita Keywood

Summary

- Decision January
- Plan B participate in 2018/2019 RV Investigator cruise


Atmospheric sampling

Supporting information
Aerosol lab –successfully deployed on two voyages- requires remote desktop
access to instrument
Aerosol lab- successfully deployed on two voyages- requires remote desktop
access to instrument- will have butanol as working liquid
Air Chemistry Lab- successfully deployed on two voyages
Air Chemistry Lab- successfully deployed on two voyages, requires 3 gas
cylinders (standards)
Air Chemistry lab successfully deployed on two voyages- uses sealed
radioactive source
Aerosol lab successfully deployed on two voyages- uses sealed radioactive
source- requires remote desktop access to instrument
Secured to a rail deck outside (observation deck); requires sample
conditioning switch
In the fore deck container with a stabilized platform (BOM)
In the fore deck container (BOM)
Main mast, second highest platform preferred (OceanRAIN project manager,
Christian Klepp). Three instruments (disdrometer, detector and anemometer)
along with data logger in dry lab. 40 m single-cable length.
In left-hand foredeck container space:
Atmospheric composition mobile container containing:
- Chemical Ionization Mass Spectrometer (NO carrier gas, Po-210 radiation
source)
- Ecotech-UoW FTIR "Spectronus" (carrier and standard gas cylinders)
- MAX-DOAS (passive remote sensor optics located on rail of deck 3)
- Mini micropulse lidar (class 2 laser) (BOM container) - Nephelometer
- Radon detector (Ra-226 source)
- Multi-Angle Absorption Photometer
- HIVOL 3000 particulate sampler (observation deck)

Sonic anemometer	Main mast or one of the bow arms
and custom built	
humidity sensor	
microDirac GC-ECD	Air chemistry lab using MNF aerosol inlet sampling line, clean from local
	effects. Low power, space needs. Will require internet connection and space
	for gas cylinders (carrier and standards).
iDirac	Air Chemistry Lab using MNF aerosol inlet sampling line, clean from local
	effects. Low power, space needs. Will require internet connection.
Radiosonde /	Telemetry in observation deck room. Balloon filling in sheltered science
polarsonde	space. Helium stored in external gas locker / 1-2 D bottles in sheltered
atmospheric	science space for balloon filling.
soundings	
Thermo Scientific	Clean wet lab, deckboard incubators, Radvan (15N-N $_2$ gas (99 % pure))
Delta V isotope ratio	
mass spectrometer	
DMS Oceanic gas	Air Chemistry laboratory (air, helium and hydrogen gas cylinders, liquid
chromograph with	nitrogen). Hazardous chemicals (1% H ₂ SO ₄).
cryotrap	
Microstructure Profiler	Profiler that measures temperature, salinity, and velocity shears at high
	resolution. Profiler is small version that only goes to 200 m (Robertson and
	Lemckert)
Halocarbon - purge-	Clean wet lab. Purge and trap system, gas chromatograph with mass
and trap system	spectrometer, required are water samples (requiring a surface water pump,
	bottle rosette sampler) in the clean wet lab (1.5 x 3 m bench space required).
	Liquid nitrogen, helium, nitrogen gas cylinders are required). Standard
	oceanographic data such as SST, SSS, chlorophyll are also required.
Greenhouse gas high-	Clean wet lab. (Picarro G2308 and PcarroG2201-I) for CO_2 , CH_4 and N_2O
precision cavity ring	analysis of seawater through a shower head gas equilibration device sampling
down spectrometers	a 3L/min. Requires gas standards – 3 compressed gas cylinders.
²²² Rn RAD-7 detector	Clean wet lab. Radiation standard contained within instrument. Requires
	seawater supply through a shower head gas equilibration device sampling a
	3L/min.

DJF climatologies

Krüger, K., S. Tegtmeier, and M. Rex (2008), Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL) during NH winter, Atmos Chem Phys, 8(4), 813–823.