Size-resolved Composition and Morphology of Particulate Matter During the Southwest Monsoon in Metro Manila, Philippines

Melliza Templonuevo Cruz^{1,2}, Paola Angela Bañaga^{1,3}, Grace Betito³, Rachel A. Braun⁴, Connor Stahl⁴, Mojtaba Azadi Aghdam⁴, Maria Obiminda Cambaliza^{1,3}, Hossein Dadashazar⁴, Miguel Ricardo Hilario³, Genevieve Rose Lorenzo¹, Lin Ma⁴, Alexander B. MacDonald⁴, Preciosa Corazon Pabroa⁵, John Robin Yee⁵, James Bernard Simpas^{1,3}, Armin Sorooshian^{4,6}

¹Manila Observatory

²Institute of Environmental Science and Meteorology, University of the Philippines ³Department of Physics, Ateneo de Manila University

⁴Department of Chemical and Environmental Engineering, University of Arizona ⁵Philippine Nuclear Research Institute

⁶Department of Hydrology and Atmospheric Sciences, University of Arizona

Outline

- I. Motivation
- II. Methodology
- III. Results
 - Size distribution
 - Total PM mass
 - Water-soluble species
 - Black carbon
 - Morphology
 - Positive Matrix Factorization (PMF)
- IV. Summary & Future Work

Climate

Motivation: Very High PM Levels in Metro Manila

PM_{2.5} Concentrations at the Manila Observatory

Motivation: Poorly Understood Chemical Properties

PM_{2.5} Concentrations at Different Sites in Metro Manila

Speciation has only been done for bulk PM_{2.5}

Objectives

- To report size-resolved PM mass, composition, and morphology during the Southwest Monsoon (SWM) season in Metro Manila.
- 2. To determine the possible sources and their contribution to the measured chemical components.
- To provide baseline data of aerosol composition to be used to inform and assist research to be conducted during the CAMP²Ex campaign.

Sampling and Analyses

Micro-Orifice Uniform Deposit Impactor (MOUDI)

Morphology and additional elemental composition SEM-EDX, Hitachi S-4800 & Thermo Fisher Scientific

University of Arizona

Teflon substrate

Mass Sartorius ME5-F microbalance

Black Carbon Multi-wavelength Absorption Black Carbon Instrument (MABI), ANSTO **Sampling Parameters & Conditions**

Mass Size Distribution of PM and its Components

Total Mass Concentration: 53.0 µg m⁻³

31.3% water-soluble species, 26.9% BC, 41.8% Unaccounted

Black Carbon

- Pronounced peak between 0.18–0.32 μm: 5.0 μg m⁻³
- Total BC mass concentration integrated across all stages: 14.3 μg m⁻³

Water-soluble Components (Ions)

- Mass concentration mode between 0.32–0.56 µm: Secondarily produced species
- Mass concentration mode between 1.8–5.6 µm: Species related to sea salt and crustal materials

14

Water-soluble Components (Elements)

- Mass concentration mode between 0.18 – 0.56 µm: Species related to combustion sources
- Mass concentration mode > 1.0 μm:
 Species related to crustal materials
- Mass concentration mode in both suband supermicrometer stages: Fe which could be from combustion and crustal materials

Microscopy Analysis (Submicrometer Fraction)

- Contrary to assumptions of sphericity in models, non-spherical particles were observed in all stages below 1.0 μm.
- Agglomeration of spherical particles formed through gas-to-particle conversion processes could potentially explain the appearance of observed particles.

Microscopy Analysis (Supermicrometer Fraction)

As expected of sea salt and crustal material, most of the observed particles were not spherical.
 Only the particle in the 1.0 – 1.8 μm stage was close to being spherical.

PMF Reconstructed Mass Size Distribution

Diameter Range (µm)	Aged/Transported	Sea Salt	Combustion	Vehicular/Resuspended Dust	Waste Processing
> 0.056	48.0%	22.5%	18.7%	5.6%	5.1%
0.056 - 1.0	68.9%	0.6%	23.9%	1.5%	5.1%
> 1.0	18.6%	53.5%	11.3%	11.3%	5.3%

Summary

- 1. Most of the total PM mass as well as 95% of the BC mass was in $D_p < 1.0 \mu m$.
- 2. BC and the water-soluble species accounted for 58% of the total PM mass with most of the unresolved mass in $D_p > 0.32 \ \mu m$.
- 3. Potential sources of the water-soluble fraction are Aged/Transported Aerosol, Sea Salt, Combustion, Vehicular/Resuspended Dust, and Waste Processing.
- 4. Future work will focus on CI- depletion as well as seasonal variations of PM and its composition.

Acknowledgments

Manila Observatory Scientists and Staff University of Arizona Scientists Phil. Nuclear Research Institute

PMF Factor Profiles

22