JAMSTEC > JAMSTEC研究者総覧 > 古市 幹人

JAMSTEC研究者総覧

更新日:2018/06/15

  • 古市 幹人
  • フルイチ ミキト
所属
付加価値情報創生部門 数理科学・先端技術研究開発センター 計算科学・工学グループ グループリーダー
兼務
SIP海洋統括プロジェクトチーム レアアース生産技術開発プロジェクトチーム レアアース採鉱ユニット
キャリア
主任研究員

プロフィール

専門
計算地球科学
HP
http://www.jamstec.go.jp/mat/j/members/m-furuic/
受賞歴
2016/06/01 第21回計算工学講演会グラフィックスアワード最優秀賞
2012/07/01 可視化情報学会第23期学会映像賞

研究業績

査読有り(JAMSTECでの成果)

  • Sota Arakawa, Misako Tatsuuma, Hidekazu Tanaka, Mikito Furuichi, and Daisuke Nishiura. Interparticle normal force in highly porous granular matter during compression. PHYSICAL REVIEW E, 2024, 109, doi: 10.1103/PhysRevE.109.024904
  • Mikito Furuichi, Jian Chen, Daisuke Nishiura, Ryuta Arai, Yuzuru Yamamoto, Satoshi Ide. Virtual earthquakes in a numerical granular rock box experiment. TECTONOPHYSICS, 2024, 874, 11, p. 230230, doi: 10.1016/j.tecto.2024.230230
  • Chen Jian; Furuichi Mikoto; Nishiura Daisuke. Toward large-scale fine resolution DEM landslide simulations: periodic granular box for efficient modeling of excavatable slope. COMPUTERS AND GEOTECHNICS, 2023, 165, doi: 10.1016/j.compgeo.2023.105855
  • Natuki Hosono, Mikito Furuichi. Efficient implementation of low-order-precision smoothed particle hydrodynamics. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, p. 1-17, doi: 10.1177/10943420231201144
  • Jian Chen, Dominik Krengel, Daisuke Nishiura, Mikito Furuichi, Hans-Georg Matuttis. A force-displacement relation based on the JKR theory for DEM simulations of adhesive particles. POWDER TECHNOLOGY, 2023, 427, doi: 10.1016/j.powtec.2023.118742
  • Sota Arakawa, Satoshi Okuzumi, Misako Tatsuuma, Hidekazu Tanaka, Eiichiro Kokubo, Daisuke Nishiura, Mikito Furuichi, Taishi Nakamoto. Size Dependence of the Bouncing Barrier in Protoplanetary Dust Growth. Astrophysical Journal Letters, 2023, 951, 1, p. L16, doi: 10.3847/2041-8213/acdb5f
  • Furuichi M., Chen Jian., Nishiura D., Arai Ryuta., Yamamoto Yuzuru.,. Thrust formation using a numerical granular rock box experiment. TECTONOPHYSICS, 2023, 862, p. 229963, doi: 10.1016/j.tecto.2023.229963
  • Sota Arakawa, Daisuke Nishiura, Mikito Furuichi. Interpebble contact radius in a comet nucleus. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 521, 4, p. 4927-4935, doi: 10.1093/mnras/stad896
  • Sota Arakawa, Hidekazu Tanaka, Eiichiro Kokubo, Daisuke Nishiura, Mikito Furuichi. Threshold velocity for the collisional growth of porous dust aggregates consisting of cohesive frictionless spheres. ASTRONOMY & ASTROPHYSICS, 2023, 670, p. L21, doi: 10.1051/0004-6361/202345887
  • Jian Chen, Azusa Kitamura, Ettore Barbieri, Daisuke Nishiura, Mikito Furuichi. Analyzing effects of microscopic material parameters on macroscopic mechanical responses in underwater mixing using discrete element method. POWDER TECHNOLOGY, 2022, 401, doi: 10.1016/j.powtec.2022.117304
  • Shun Nomura, Giovanni De Cesare, Mikito Furuichi, Yasushi Takeda, Hide Sakaguchi. Spatio-temporal deposition profile of an experimentally produced turbidity current with a continuous suspension supply. International Journal of Sediment Research, 2021, 37, 3, p. 299-306, doi: 10.1016/j.ijsrc.2021.11.004
  • Jian Chen, Daisuke Nishiura, Mikito Furuichi. DEM study of the influences of the geometric and operational factors on the mechanical responses of an underwater mixing process. POWDER TECHNOLOGY, 2021, 392, p. 251-263, doi: 10.1016/j.powtec.2021.06.049
  • Daisuke Nishiura, Mikito Furuichi, Hide Sakaguchi. Real-scale DEM simulations on the fault evolution process observed in sandbox experiments. ADVANCED POWDER TECHNOLOGY, 2021, 32, 11, p. 4432-4441, doi: 10.1016/j.apt.2021.09.007
  • Ippei Oshima , Mikito Furuichi. Numerical Simulation of a Particle in Air Flow Around a Turbine Blade. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2021, doi: 10.1115/GT2020-14752
  • Arthur Bauville , Mikito Furuichi, Muriel Gerbault. Control of Fault Weakening on the Structural Styles of Underthrusting-Dominated Non-Cohesive Accretionary Wedges. JOURNAL OF GEOPHYSICAL RESEARCH - Solid Earth, 2020, 125, 3, doi: 10.1029/2019JB019220
  • Jian Chen, Mikito Furuichi, Daisuke Nishiura. Discrete Element Simulation and Validation of a Mixing Process of Granular Materials. Materials, 2020, 13, 5, doi: 10.3390/ma13051208
  • Hosono N, Furuichi M. Implementation of SPH and DEM for a PEZY-SC Heter-ogeneous Many-Core System. Mechanisms and Machine Science, 2019, 75, p. 709-715, doi: 10.1007/978-3-030-27053-7_60
  • Davide Wuthrich, Daisuke Nishiura, Shun Nomura, Mikito Furuichi, Michael Pfister, Giovanni De Cesare. Experimental and Numerical Study on Wave-Impact on Buildings. E-proceedings of the 38th IAHR World Congress, 2019, p. 6047-6056
  • Daisuke Nishiura, Davide Wuthrich, Mikito Furuichi, Shun Nomura, Michael Pfister, Giovanni De Cesare. Numerical Approach in the Study of Tsunami-like Waves and Comparison with Experimental Data. Proceedings of the 29th International Ocean and Polar Engineering Conference, 2019, 3, p. 3166-3173
  • Natsuki Hosono, Mikito Furuichi. The Performance Prediction and Improvement of SPH with the Interaction-List-Sharing Method on PEZY-SCs. Lecture Notes in Computer Science – ICCS 2019, 2019, 11540, 5, p. 476-482, doi: 10.1007/978-3-030-22750-0_40
  • 西浦 泰介,古市 幹人,阪口 秀. 砂箱実験における断層発達過程のリアルスケール粉体シミュレーション. 粉体工学会誌, 2019, 56, 4, p. 203-210, doi: 10.4164/sptj.56.203
  • M. Furuichi, D. Nishiura, T. Hori. Massively parallel stress chain characterization for billion particle DEM simulation of accretionary prism formation. SC18, 2018, doi: https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post136s2-file3.pdf
  • Furuichi Mikito, Daisuke Nishiura, Osamu Kuwano, Arthur Bauville, Takane T Hori, Hide Sakaguchi. Arcuate stress state in accretionary prisms from real-scale numerical sandbox experiments. Scientific Reports, 2018, 8, doi: 10.1038/s41598-018-26534-x
  • Furuichi Mikito, Daisuke Nishiura, Osamu Kuwano, Arthur Bauville, Takane T Hori, Hide Sakaguchi. Arcuate stress state in accretionary prisms from real-scale numerical sandbox experiments. Scientific Reports, 2018, 8, doi: 10.1038/s41598-018-26534-x
  • Keita OGASAWARA, Mitsuteru ASAI, Mikito FURUICHI, Daisuke NISHIURA. Development of an Explicit Scheme of the Stabilized ISPH for Large Scaled Tsunami Run-up Simulation. 土木学会論文集, 2018, 73, 2, p. I_397-I404, doi: 10.2208/jscejam.73.I_397
  • Kensuke Yokoi, Mikito Furuichi, Mikio Sakai. An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows. PHYSICS OF FLUIDS, 2017, 29, p. 121611, doi: DOI: 10.1063/1.4996183
  • M. Furuichi, D. Nishiura, M. Asai, T. Hori. The first real-scale DEM simulation of a sandbox experiment using 2.4 billion particles. SC17 research poster, 2017
  • mikito furuichi, daisuke nishiura. Iterative load-balancing method with multigrid level relaxation for particle simulation with short-range interactions. COMPUTER PHYSICS COMMUNICATIONS, 2017, 219, p. 135-148, doi: https://doi.org/10.1016/j.cpc.2017.05.015
  • NISHIURA DAISUKE , FURUICHI MIKITO , SAKAGUCHI HIDE. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing. Computer Physics Communications, 2015, 194, p. 18-32, doi: 10.1016/j.cpc.2015.04.006
  • M. Furuichi and D. May. Implicit solution of the material transport in Stokes flow simulation: toward thermal convection simulation surrounded by free surface. Computer Physics Communications, 2015, 192, p. 1-11
  • Mikito Furuichi 2 1 and Daisuke Nishiura1. Robust coupled fluid-particle simulation scheme in Stokes-flow regime: toward the geodynamic simulation including granular media. Geochemistry, Geophysics, Geosystems./ American Geophysical Union, 2014, 15, 7, p. 2865-2882, doi: 10.1002/2014GC005281
  • 古市 幹人、 西浦 泰介. GPUやベクトル計算機における粒子リマッピングアルゴリズムの比較. 第25回計算力学講演会(CMD2012), 2012
  • Mikito Furuichi and Takashi Nakawaga. Development of a Stokes flow simulation code for core formation. JSST 2012: International Conference on Simulation Technology, 2012, p. 285-288
  • Mikito Furuichi and Seiji Tuboi. Development of visualization tool for the wave propagation data on sphere. JSST 2012: International Conference on Simulation Technology, 2012, p. 166-169
  • FURUICHI MIKITO,May Dave,Tackley Paul. Development of a Stokes Flow Solver Robust to Large Viscosity Jumps Using a Schur Complement Approach with Mixed Precision Arithmetic.. Journal of Computational Physics, 2011, 230, p. 8835-8851, doi: 10.1016/j.jcp.2011.09.007
  • Mikito Furuichi. Numerical modeling of three dimensional self-gravitating Stokes flow problem with free surface. Procedia Computer Science, 2011, 4, p. 1506-1515
  • Mikito Furuichi, Masanori Kameyama, Akira Kageyama. Validity test of a Stokes flow solver by fluid rope coiling: toward plate-mantle simulation. Phys. Earth Planet. Inter., 2009, 176, p. 44-53
  • Mikito Furuichi, Masanori Kameyama , Akira Kageyama. Three-Dimensional Eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation. Journal of Computational Physics, 2008, 227, p. 4977-4997
  • Mikito furuichi, Fumiaki Araki, Hideharu Sasaki. Visualization Analysis of Large-Scale Three-Dimensional Scalar Data of Ocean Simulation. Journal of Visualization, 2006, 9, 4, p. 356
  • Mikito Furuichi, F. Araki, H. Sasaki. 地球シミュレータにおける海洋大循環 シミュレーション(OFES)での 大気海洋現象の可視化. 可視化情報, Suppl. 3.,2004, 2004, Suppl, p. 3

査読有り(その他)

  • M. Furuichi, K. Shimizu, S. Takeuchi. Description of SU(3) s-wave and p-wave baryons. Physical Review C, 2003, 68, p. 34001, doi: 10.1103/PhysRevC.68.034001
  • M. Furuichi, K. Shimizu. Description of SU(3) Octet and Decuplet Baryons. Physical Review C, 2002, 65, p. 25201, doi: 10.1103/PhysRevC.65.025201

査読無し(JAMSTECでの成果)

  • 西浦泰介,古市幹人,阪口秀. 混相流に対する粒子法シミュレーション -津波からマグマまで-. 金属, 2015, 85, 11, p. 894-900
  • 古市 幹人,荒木 文明,陰山 聡. 大規模地球変動シミュレーションの可視化技術開発 ―「京」コンピュータが再現する地震・津波・台風の可視化に向けて―. 可視化情報, 2012, 32, 127, p. 16-21
  • furuichi,nakamura, tsuboi. 2011年3月11日東北地方太平洋沖地震(M9.0)により発生した地震波が地球の表面を伝わる様子のシミュレーション結果. 可視化情報学会HP 今月のFlash, 2011
  • CURRENT PROGRESSES ON NUMERICAL SIMULATIONS OF GLOBAL-SCALE GEODYNAMICS: METHODS AND APPLICATIONS. International Symposium on Disaster Simulation & Structural Safety in the Next Generation 2011 (DS'11), 2011, p. 179-186