JAMSTEC > Research Institute for Value-Added-Information Generation (VAiG) > Center for Mathematical Science and Advanced Technology (MAT) > Member > Yoji Kawamura

Center for Mathematical Science and Advanced Technology (MAT)

Members

Yoji Kawamura

Senior Scientist
Center for Mathematical Science and Advanced Technology
Japan Agency for Marine-Earth Science and Technology

3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
ykawamura_at_jamstec.go.jp
researchmap


Short CV

Keywords: Nonlinear Dynamics, Synchronization, Oscillation

Employment

2017.4 - Senior Scientist, Japan Agency for Marine-Earth Science and Technology
2007.4 - 2017.3 Scientist, Japan Agency for Marine-Earth Science and Technology

Education

2004.4 - 2007.3 Doctor, Department of Physics, Graduate School of Science, Kyoto University
2002.4 - 2004.3 Master, Department of Physics, Graduate School of Science, Kyoto University
1998.4 - 2002.3 Bachelor, Faculty of Science, Kyoto University

Grants

2018.4 - 2022.3 JSPS KAKENHI Grant Number 18H03205 (Co)
2017.4 - 2021.3 JSPS KAKENHI Grant Number 17H03279 (Co)
2016.4 - 2020.3 JSPS KAKENHI Grant Number 16K17769 (PI)
2013.4 - 2016.3 JSPS KAKENHI Grant Number 25800222 (PI)

Awards

2016.3 Young Scientist Award of the Physical Society of Japan
2015.4 JAMSTEC Research and Development Achievement Award

Research Topics

Phase description approach to synchronization of oscillatory convection
Phase synchronization between a pair of weakly coupled rotating annuli exhibiting oscillatory convection was experimentally observed. We have thus formulated a theory for the phase description of such oscillatory convection toward a unified understanding of synchronization phenomena in weakly coupled systems of oscillatory convection.
summary1
Snapshots of the temperature field (T) and phase sensitivity (Z). The phase sensitivity function quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point. [Kawamura and Nakao, Chaos 23, 043129 (2013); Phys. Rev. E 89, 012912 (2014).]
summary2
Snapshots of the temperature field (T) and two phase sensitivity functions (Zs, Zt). The two phase sensitivity functions quantify the spatiotemporal phase responses of the oscillatory convection to weak perturbations applied at each spatial point. [Kawamura and Nakao, Physica D 295-296, 11-29 (2015).]
Phase description approach to synchronization of beating flagella
Phase synchronization between a pair of hydrodynamically coupled beating flagella was experimentally observed. We have thus formulated a theory for the phase description of such a beating flagellum toward a unified understanding of synchronization phenomena in hydrodynamically coupled beating flagella.
summary3
Snapshots of the waveform (h) and phase sensitivity (Z). The phase sensitivity function quantifies the phase response of the beating flagellum to weak perturbations applied at each point. [Kawamura and Tsubaki, Phys. Rev. E 97, 022212 (2018).]

Publications

Original Publications (Peer-Reviewed)

  • Hiroya Nakao, Sho Yasui, Masashi Ota, Kensuke Arai, Yoji Kawamura, Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations, Chaos, 28, 4, 1-10, 045103, (2018), doi:10.1063/1.5009669
  • Yoji Kawamura, Remi Tsubaki, Phase reduction approach to elastohydrodynamic synchronization of beating flagella, Physical Review E, 97, 2, 1-10, 022212, (2018), doi:10.1103/PhysRevE.97.022212
  • Yoji Kawamura, Sho Shirasaka, Tatsuo Yanagita, Hiroya Nakao, Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems, Physical Review E, 96, 1, 1-12, 012224, (2017), doi:10.1103/PhysRevE.96.012224
  • Sho Shirasaka, Nobuhiro Watanabe, Yoji Kawamura, Hiroya Nakao, Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling, Physical Review E, 96, 1, 1-12, 012223, (2017), doi:10.1103/PhysRevE.96.012223
  • Yoji Kawamura, Collective phase reduction of globally coupled noisy dynamical elements, Physical Review E, 95, 3, 1-19, 032225, (2017), doi:10.1103/PhysRevE.95.032225
  • Yoji Kawamura, Hiroya Nakao, Optimization of noise-induced synchronization of oscillator networks, Physical Review E, 94, 3, 1-14, 032201, (2016), doi:10.1103/PhysRevE.94.032201
  • Yoji Kawamura, Hiroya Nakao, Phase description of oscillatory convection with a spatially translational mode, Physica D, 295-296, 11-29, (2015), doi:10.1016/j.physd.2014.12.007
  • Hiroya Nakao, Tatsuo Yanagita, Yoji Kawamura, Phase-reduction approach to synchronization of spatiotemporal rhythms in reaction-diffusion systems, Physical Review X, 4, 2, 1-23, 021032, (2014), doi:10.1103/PhysRevX.4.021032
  • Yoji Kawamura, Phase synchronization between collective rhythms of fully locked oscillator groups, Scientific Reports, 4, 1-7, 4832, (2014), doi:10.1038/srep04832
  • Yoji Kawamura, Collective phase dynamics of globally coupled oscillators: Noise-induced anti-phase synchronization, Physica D, 270, 20-29, (2014), doi:10.1016/j.physd.2013.12.004
  • Yoji Kawamura, From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation, Physical Review E, 89, 1, 1-5, 010901(R), (2014), doi:10.1103/PhysRevE.89.010901
  • Nozomi Sugiura, Takane Hori, Yoji Kawamura, Synchronization of coupled stick-slip oscillators, Nonlinear Processes in Geophysics, 21, 1, 251-267, (2014), doi:10.5194/npg-21-251-2014
  • Yoji Kawamura, Hiroya Nakao, Noise-induced synchronization of oscillatory convection and its optimization, Physical Review E, 89, 1, 1-13, 012912, (2014), doi:10.1103/PhysRevE.89.012912
  • Yoji Kawamura, Hiroya Nakao, Collective phase description of oscillatory convection, Chaos, 23, 4, 1-11, 043129, (2013), doi:10.1063/1.4837775
  • Hiroya Nakao, Tatsuo Yanagita, Yoji Kawamura, Phase description of stable limit-cycle solutions in reaction-diffusion systems, Procedia IUTAM, 5, 227-233, (2012), doi:10.1016/j.piutam.2012.06.030
  • Hiroshi Kori, Yoji Kawamura, Naoki Masuda, Structure of cell networks critically determines oscillation regularity, Journal of Theoretical Biology, 297, 61-72, (2012), doi:10.1016/j.jtbi.2011.12.007
  • Yoji Kawamura, Hiroya Nakao, Yoshiki Kuramoto, Collective phase description of globally coupled excitable elements, Physical Review E, 84, 4, 1-12, 046211, (2011), doi:10.1103/PhysRevE.84.046211
  • Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Hiroshi Kori, Yoshiki Kuramoto, Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case, Chaos, 20, 4, 1-8, 043110, (2010), doi:10.1063/1.3491346
  • Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Hiroshi Kori, Yoshiki Kuramoto, Phase synchronization between collective rhythms of globally coupled oscillator groups: Noisy identical case, Chaos, 20, 4, 1-10, 043109, (2010), doi:10.1063/1.3491344
  • Naoki Masuda, Yoji Kawamura, Hiroshi Kori, Collective fluctuations in networks of noisy components, New Journal of Physics, 12, 9, 1-15, 093007, (2010), doi:10.1088/1367-2630/12/9/093007
  • Naoki Masuda, Yoji Kawamura, Hiroshi Kori, Impact of hierarchical modular structure on ranking of individual nodes in directed networks, New Journal of Physics, 11, 11, 1-21, 113002, (2009), doi:10.1088/1367-2630/11/11/113002
  • Naoki Masuda, Yoji Kawamura, Hiroshi Kori, Analysis of relative influence of nodes in directed networks, Physical Review E, 80, 4, 1-10, 046114, (2009), doi:10.1103/PhysRevE.80.046114
  • Hiroshi Kori, Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Yoshiki Kuramoto, Collective-phase description of coupled oscillators with general network structure, Physical Review E, 80, 3, 1-9, 036207, (2009), doi:10.1103/PhysRevE.80.036207
  • Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Hiroshi Kori, Yoshiki Kuramoto, Collective phase sensitivity, Physical Review Letters, 101, 2, 1-4, 024101, (2008), doi:10.1103/PhysRevLett.101.024101
  • Hiroya Nakao, Kensuke Arai, Yoji Kawamura, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators, Physical Review Letters, 98, 18, 1-4, 184101, (2007), doi:10.1103/PhysRevLett.98.184101
  • Yoji Kawamura, Hole structures in nonlocally coupled noisy phase oscillators, Physical Review E, 76, 4, 1-4, 047201, (2007), doi:10.1103/PhysRevE.76.047201
  • Yoji Kawamura, Chimera Ising walls in forced nonlocally coupled oscillators, Physical Review E, 75, 5, 1-6, 056204, (2007), doi:10.1103/PhysRevE.75.056204
  • Yoji Kawamura, Hiroya Nakao, Yoshiki Kuramoto, Noise-induced turbulence in nonlocally coupled oscillators, Physical Review E, 75, 3, 1-17, 036209, (2007), doi:10.1103/PhysRevE.75.036209
  • Yoshiki Kuramoto, Yoji Kawamura, External noise can cause complex effective dynamics in pattern-forming systems, Journal of the Korean Physical Society, 50, 1, 170-177, (2007), doi:10.3938/jkps.50.170
  • Yoji Kawamura, Yoshiki Kuramoto, Phase transition in chemical turbulence through global feedback: Relevance to catalytic CO oxidation on Pt surfaces, Progress of Theoretical Physics Supplement, 161, 216-219, (2006), doi:10.1143/PTPS.161.216
  • Yoji Kawamura, Yoshiki Kuramoto, Onset of collective oscillation in chemical turbulence under global feedback, Physical Review E, 69, 1, 1-5, 016202, (2004), doi:10.1103/PhysRevE.69.016202

Other Publications

  • Yoji Kawamura, Theory of phase reduction for oscillatory convection with infinite degrees of freedom, Meeting Abstracts of the Physical Society of Japan, 71, 2986-2987, (2016), doi:10.11316/jpsgaiyo.71.1.0_2986
  • Yoji Kawamura, Hierarchical structure and collective phase description of coupled oscillators, RIMS Kokyuroku, 1827, 51-61, (2013), hdl:2433/194783
  • Naoki Masuda, Yoji Kawamura, Hiroshi Kori, Effects of network structure on the precision of biological rhythms, Journal of the Japan Society for Precision Engineering, 77, 2, 145-148, (2011), doi:10.2493/jjspe.77.145
  • Naoki Masuda, Yoji Kawamura, Hiroshi Kori, Structure of networks determines the system size dependency of noise intensity in collective dynamics, Seibutsu Butsuri, 49, Supplement, S48-S49, (2009), doi:10.2142/biophys.49.S48_5
  • Kunihiko Watanabe, Wataru Ohfuchi, Akira Kageyama, Keiko Takahashi, Fumiaki Araki, Kanya Kusano, Shigenobu Hirose, Hideharu Sasaki, Nobumasa Komori, Takeshi Enomoto, Akira Kuwano-Yoshida, Bunmei Taguchi, Mamoru Hyodo, Mikito Furuichi, Takehiro Miyagoshi, Ryo Onishi, Takeshi Sugimura, Yuya Baba, Shin-ichiro Kida, Shintaro Kawahara, Nobuaki Ohno, Akio Kawano, Tooru Sugiyama, Shin-ichiro Shima, Hiroki Hasegawa, Yoji Kawamura, The Earth Simulator Center, JAMSTEC Report of Research and Development, 9, 1, 75-135, (2009), doi:10.5918/jamstecr.9.1_75
  • Yoji Kawamura, Hiroya Nakao, Yoshiki Kuramoto, Hierarchical structure of nonlocally coupled oscillator system, NCTAM papers, 57, 223, (2008), doi:10.11345/japannctam.57.0.223.0
  • Hiroya Nakao, Kensuke Arai, Yoji Kawamura, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators, Bussei Kenkyu, 87, 4, 546-549, (2007), hdl:2433/110750
  • Yoji Kawamura, Hiroya Nakao, Yoshiki Kuramoto, Noise-induced spatiotemporal chaos in nonlocally coupled oscillators, NCTAM papers, 55, 96, (2006), doi:10.11345/japannctam.55.0.96.0

Books and Book Chapters

  • Yoshiki Kuramoto, Yoji Kawamura, Science of Synchronization: Phase Description Approach (353 pages) (Kyoto University Press, 2017) [Kyoto University Press] [References] [Google Books]
  • Yoshiki Kuramoto, Yoji Kawamura, Mathematical Theory of Synchronization Phenomena: Phase Description Approach (Nonlinear Science Series 6) (293 pages) (Baifukan, 2010) [Google Books]