JAMSTEC > Research Institute for Value-Added-Information Generation (VAiG) > Center for Mathematical Science and Advanced Technology (MAT) > Member > Takashi Minoshima

Center for Mathematical Science and Advanced Technology (MAT)

Members

Takashi Minoshima

Researcher
Japan Agency for Marine-Earth Science and Technology
Center for Mathematical Science and Advanced Technology

3173-25, Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0001, Japan
minoshim_at_jamstec.go.jp


Short CV

My reserch interest is multi-scale numerical simulations of space plasmas.

Employment

2008.4 - 2010.3 Scientist in Solar-Terrestrial Environment Laboratory, Nagoya University
2010.4 - 2014.3 Scientist in IFREE, JAMSTEC
2014.4 - Researcher in MAT, JAMSTEC

Education

2003.4 - 2005.3 Master's course in Dept. of Earth and Planetary Science, The Univ. of Tokyo
2005.4 - 2008.3 Doctoral course in Dept. of Earth and Planetary Science, The Univ. of Tokyo

Research Topics

Plasma kinetic simulations with Multi-Moment Advection scheme
The kinematics of space plasma is fully described by the first principle Vlasov-Maxwell equations. We develop an advanced technology, called Multi-Moment Advection scheme, to numerically solve the Vlasov equation (collisionless Boltzmann equation) with unprecedented high accuracy, and apply it to non-linear plasma kinetic simulations such as collisionless shock and magnetic reconnection.
Collisionless shock
Collisionless shock

Numerical simulations of Magneto-Hydro-Dynamic instabilities
Using high-order Magneto-Hydro-Dynamic (MHD) simulation code, we study macro-scale phenomena in space plasmas such as the kelvin-Helmholtz instability, Magneto-Rotational Instability, and magnetic reconnection.
Magnetic reconnection
Magnetic reconnection

Publications

Original Publications (Peer-Reviewed)

  • "A low-dissipation HLLD approximate Riemann solver for a very wide range of Mach numbers", T. Minoshima and T. Miyoshi, J. Comput. Phys. 446 110639 (2021)
  • "A Multistate Low-dissipation Advection Upstream Splitting Method for Ideal Magnetohydrodynamics", T. Minoshima, K. Kitamura, and T. Miyoshi, Astrophys. J. Supp. 248, 1, 12 (2020)
  • "A High-order Weighted Finite Difference Scheme with a Multistate Approximate Riemann Solver for Divergence-free Magnetohydrodynamic Simulations", T. Minoshima, T. Miyoshi, and Y. Matsumoto, Astrophys. J. Supp. 242, 2, 14 (2019)
  • "Boosting magnetic reconnection by viscosity and thermal conduction", T. Minoshima, T. Miyoshi, and S. Imada, Physics of Plasmas, 23, 7, 072122 (2016)
  • "Dependence of the Saturation Level of Magnetorotational Instability on Gas Pressure and Magnetic Prandtl Number", T. Minoshima, S. Hirose, and T. Sano, Astrophys. J. 54-70 (2015)
  • "A finite volume formulation of the multi-moment advection scheme for Vlasov simulations of magnetized plasma", T. Minoshima et al., Comput. Phys. Commun. 137-151 (2015)
  • "Multi-moment advection scheme in three dimension for Vlasov simulations of magnetized plasma", T. Minoshima et al., J. Comput. Phys. 81-95 (2013).
  • "Multi-moment advection scheme for Vlasov simulations", T. Minoshima et al., ASP Conf. Series, 277-282 (2012)
  • "Multi-moment advection scheme for Vlasov simulations", T. Minoshima et al., J. Comput. Phys. 6800-6823 (2011)
  • "Coronal Electron Distribution in Solar Flares: Drift-kinetic Model", T. Minoshima et al., Astrophys. J. 111-117 (2011)
  • "Drift-kinetic Modeling of Particle Acceleration and Transport in Solar Flares", T. Minoshima et al., Astrophys. J. 332-342 (2010)
  • "Multiwavelength observation of Electron Acceleration in the 2006 December 13 Flare", T. Minoshima et al., Astrophys. J. 843-849 (2009)
  • "Numerical Study of a Propagating Nonthermal Microwave Feature in a Solar Flare Loop", T. Minoshima and Y. Yokoyama, Astrophys. J. 701-708 (2008)
  • "Comparative Analysis of Nonthermal Emissions and Electron Transport in a Solar Flare", T. Minoshima et al., Astrophys. J. 598-610 (2008)

Other Publications (Peer-Reviewed)

  • "A short note on reconstruction variables in shock capturing schemes for magnetohydrodynamics", T. Miyoshi and T. Minoshima, J. Comput. Phys. 423 109804 (2020)
  • "Magnetohydrodynamic simulation code CANS+: Assessments and applications", Y. Matsumoto et al., Publ. Astron. Soc. Japan, 71, 4, 83 (2019)
  • "Multidimensional Vlasov-Poisson Simulations with High-order Monotonicity- and Positivity-preserving Schemes", S. Tanaka, K. Yoshikawa, T. Minoshima, and N. Yoshida, Astrophys. J., 849, 2, 76 (2017)
  • "A Catalog of Suzaku/WAM Hard X-Ray Solar Flares", A. Endo et al., Publ. Astron. Soc. Japan 1341-1349 (2010)
  • "Non-Gaussian Line Profiles in a Large Solar Flare Observed on 2006 December 13", S. Imada et al., Astrophys. J. 155-159 (2008)
  • "Flare Ribbons Observed with G-band and FeI 6302A Filters of the Solar Optical Telescope on Board Hinode", H. Isobe et al., Publ. Astron. Soc. Japan 807-813 (2007)

Books and Book Chapters

  • "太陽地球圏環境予測 オープン・テキストブック 3-3-3 「太陽高エネルギー粒子予測」", 簑島敬、名古屋大学 (2021)
  • "粒子と流体。2つの性質を持つプラズマの振る舞いを第一原理と磁気流体力学で解く ", 簑島敬、BlueEarth 30 12 (2018)
  • "新数値モデリングで迫る太陽フレア粒子加速機構", 簑島敬、増田智、三好由純、草野完也、天文月報 552-560 (2010)
  • "数値天文学テクニカルマニュアル増補版 第6章", 簑島敬、千葉大学 (2012)