RID diagnostics explained

The RID provides various data divided into three components:

ComponentLabel
Zonal-mean data on pressure levelszonal
Horizontal slices of selected pressure levelssingle-level
Surface variables *under developmentsurface
The three major components of the reanalysis intercomparison dataset

Zonal

The zonal-mean component of the dataset is composed of the following subcomponents:

LabelDescription
coreCore set of zonal-mean variables
fluxesEddy covariance terms based on zonal anomalies
dtTemporal derivatives
momDiagnostics based on the momentum equation
tem-qgTransformed Eulerian mean diagnostics based on quasi-geostrophic equations
tem-prTransformed Eulerian mean diagnostics based on primitive equations
tem-thermoThermodynamic diagnostics based on Transformed Eulerian mean primitive equations
moistDiagnostics involving specific humidity
Subcomponents of the zonal component of the reanalysis intercomparison dataset

Notation: Overbars ($\overline{x}$) denote zonal averages and primes ($’$) departures therefrom.

Zonal diagnostics are provided on the following pressure levels:

Common 20CRv2 20CRv2c 20CRv3 CFSR CFSv2 ERA-20C ERA-40 ERA-Interim ERA5 ERA5.1 JRA-25 JRA-3Q JRA-55 JRA-55C MERRA MERRA-2 NCEP-DOE-R2 NCEP-NCAR-R1
Pressure Levels (hPa)
1 o o o o o o o o o o o o o o o
2 o o o o o o o o o o o o o o
3 o o o o o o o o o o o o o o
5 o o o o o o o o o o o o o o o
7 o o o o o o o o o o o o o o
10 o o o o o o o o o o o o o o o o o o o
20 o o o o o o o o o o o o o o o o o o o
30 o o o o o o o o o o o o o o o o o o o
50 o o o o o o o o o o o o o o o o o o o
70 o o o o o o o o o o o o o o o o o o o
100 o o o o o o o o o o o o o o o o o o o
150 o o o o o o o o o o o o o o o o o o o
200 o o o o o o o o o o o o o o o o o o o
250 o o o o o o o o o o o o o o o o o o o
300 o o o o o o o o o o o o o o o o o o o
400 o o o o o o o o o o o o o o o o o o o
500 o o o o o o o o o o o o o o o o o o o
600 o o o o o o o o o o o o o o o o o o o
700 o o o o o o o o o o o o o o o o o o o
850 o o o o o o o o o o o o o o o o o o o
925 o o o o o o o o o o o o o o o o o
1000 o o o o o o o o o o o o o o o o o

core: zonal mean of core variables

SymbolDescriptionNetCDF nameUnits
$\overline{u}$Zonal-mean zonal windu$m\,s^{-1}$
$\overline{v}$Zonal-mean meridional windv$m\,s^{-1}$
$\overline{\omega}$Zonal-mean pressure velocityw$Pa\,s^{-1}$
$\overline{T}$Temperaturet$K$
$\overline{Z}$Geopotential heightz$m$
Main (core) variables provided in the reanalysis intercomparison dataset

fluxes: eddy covariance terms based on zonal anomalies

SymbolDescriptionNetCDF nameUnits
$\overline{u’^2}$Zonal wind varianceuu$m^2\,s^{-2}$
$\overline{v’^2}$Meridional wind variancevv$m^2\,s^{-2}$
EKEEddy kinetic energyobtained by adding uu and vv$m^2\,s^{-2}$
$\overline{Z’^2}$Variance of geopotential heightzz$m^2$
$\overline{T’^2}$Temperature variancett$K^2$
$\overline{u’v’}$Covariance of zonal and meridional wind anomalies, or meridional mementum fluxvu$m^2\,s^{-2}$
$\overline{u’\omega’}$Covariance of zonal wind anomalies and pressure-velocity wind anomalies, or meridional momentum fluxwu$m\,Pa\,s^{-2}$
$\overline{v’T’}$Covariance of meridional wind anomalies and temperature anomalies, or meridional heat fluxvt$m\,K\,s^{-1}$
$\overline{\omega’T’}$Covariance of pressure velocity anomalies and temperature anomalies, or vertical heat fluxwt$Pa\,K\,s^{-1}$
Covariance (fluxes) terms provided in the reanalysis intercomparison dataset.

dt: temporal derivatives

SymbolDescriptionNetCDF nameUnits
$\partial{}\overline{T}/\partial{}t$Time derivative of temperaturet_dt$K\, s^{-1}$
$\partial{}\overline{u}/\partial{}t$Time derivative of zonal windu_dt$m\,s^{-2}$
Temporal derivative (dt) provided in the reanalysis intercomparison dataset. Useful to assess residuals of momentum and thermodynamic equations.

mom: diagnostics of the momentum equation

SymbolDescriptionNetCDF nameUnits
$f\overline{v}$Acceleration by Coriolis torquecoriolis_torque$m\,s^{-2}$
$ – \overline{v}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}$Acceleration by meridional advection of momentumu_adv_by_v$m\,s^{-2}$
$- \overline{\omega}\frac{\partial\overline{u}}{\partial{}p} $Acceleration by vertical advection of momentumu_adv_by_w$m\,s^{-2}$
$-\frac{\partial{}(\overline{\omega’u’})}{\partial{}p}$Acceleration by vertical momentum flux convergenceu_accel_by_wu_flux$m\,s^{-2}$
$- \frac{1}{a\cos^2\phi}\frac{\partial(\overline{u’v’}\cos^2\phi)}{\partial\phi}$Acceleration by meridional momentum flux convergenceu_accel_by_vu_flux$m\,s^{-2}$
Acceleration terms provided in the momentum diagnostics (mom) of the reanalysis intercomparison dataset

In the zonal mean, the momentum equation is written:

$$\frac{\partial\overline{u}}{\partial{}t} = \overbrace{f\overline{v}}^{\text{coriolis_torque}} \underbrace{- \overline{v}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}}_{\text{u_adv_by_v}} \overbrace{-\overline{\omega}\frac{\partial\overline{u}}{\partial{}p}}^{\text{u_adv_by_w}} \underbrace{- \frac{1}{a\cos^2\phi}\frac{\partial(\overline{u’v’}\cos^2\phi)}{\partial\phi}}_{\text{u_accel_by_vu_flux}}\overbrace{-\frac{\partial{}(\overline{\omega’u’})}{\partial{}p}}^{\text{u_accel_by_wu_flux}} $$

tem-qg and tem-pr: diagnostics of Eliassen-Palm flux and transformed Eulerian mean

SymbolDescriptionNetCDF nameUnits
$\phi$latitudelat
$p$ pressurepre
$a$Earth radius, 6371000 m$m$
$\overline{v}^*$Meridional component of residual circulationvres$m\,s^{-1}$
$\overline{\omega}^*$Vertical component of residual circulationwres$Pa\,s^{-1}$
$f\overline{v}^*$Coriolis torquecoriolis_torque_tem$m\,s^{-2}$
$- \overline{v}^*\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial{}\phi}$Momentum advection by meridional residual circulationu_adv_by_vres$^{1}$$m\,s^{-2}$
$- \overline{\omega}^*\frac{\partial\overline{u}}{\partial{}p}$Momentum advection by vertical residual circulationu_adv_by_wres$^{1}$$m\,s^{-2}$
$F_p$vertical component of EP-fluxEPF_pre_[qg,pr]$Pa\,m^{2}\,s^{-2}$
$F_\phi$meridional component of EP-fluxEPF_lat_[qg,pr]$m^{3}\,s^{-2}$
$\frac{(\nabla\cdot\mathbf{F})_p}{a\cos\phi}$EP-flux divergence impact on zonal wind acceleration, vertical componentEPFD_pre_[qg,pr]$^{2}$$m\,s^{-2}$
$\frac{(\nabla\cdot\mathbf{F})_\phi}{a\cos\phi}$EP-flux divergence impact on zonal wind acceleration, meridional componentEPFD_lat_[qg,pr]$^{2}$$m\,s^{-2}$
$\frac{\nabla\cdot\mathbf{F}}{a\cos\phi}$EP-flux divergence impact on zonal wind accelerationobtained by adding EPFD_pre_[qg,pr] and EPFD_lat_[qg,pr]$m\,s^{-2}$
Transformed Eulerian mean diagnostics of the RID. Quasi-geostrophic diagnostics are found in tem-qg files, and primitive-equation diagnostics are found in tem-pr files.
1 These variables belong to tem-pr but were saved in tem-qg by mistake.
2 These variables contain errors in NetCDF documentation. Please ignore.

In the transformed Eulerian mean, the momentum equation is written

$$\frac{\partial{}\overline{u}}{\partial{t}} = \overbrace{f\overline{v}^*}^{\text{coriolis_torque_tem}} \underbrace{- \overline{v}^*\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial{}\phi}}_{\text{u_adv_by_vres}} \overbrace{- \overline{\omega}^*\frac{\partial\overline{u}}{\partial{}p}}^{\text{u_adv_by_wres}} + \frac{\nabla\cdot\mathbf{F}}{a\cos\phi}$$

where the residual circulation is defined as

$$\overbrace{\overline{v}^*}^{\text{vres}}=\overline{v}-\frac{\partial}{\partial{}p}\left[\frac{\overline{v’\theta’}}{\partial{}\overline{\theta}/\partial{}p}\right]$$

$$\overbrace{\overline{\omega}^*}^{\text{wres}}= \overline{\omega}+\frac{1}{a\cos\phi}\frac{\partial}{\partial\phi}\left[\frac{\overline{v’\theta’}\cos\phi}{\partial\overline{\theta}/\partial{}p}\right]$$

The equation of the EP-flux divergence is:

$$\nabla\cdot\mathbf{F}=\underbrace{ \frac{1}{a\cos{}\phi} \frac{\partial{}(\overbrace{F_\phi}^{\text{EPF_lat_[qg,pr]}}\cos\phi)}{\partial{}\phi}}_{(\nabla\cdot\mathbf{F})_\phi}+\underbrace{\frac{\partial{}\overbrace{F_p}^{\text{EPF_pre_[qg,pr]}}}{\partial{}p}}_{(\nabla\cdot\mathbf{F})_p}$$

In the dataset, the EP-flux divergence is provided in the form of its impact on zonal wind acceleration. It is therefore scaled by $\frac{1}{a\cos\phi}$:

$$\overbrace{\frac{(\nabla\cdot\mathbf{F})_p}{a\cos\phi}}^{\text{EPFD_pre_[qg,pr]}}= \frac{1}{a\cos\phi}\frac{\partial{}\overbrace{F_p}^{\text{EPF_pre_[qg,pr]}}}{\partial{}p}$$

$$\overbrace{\frac{(\nabla\cdot\mathbf{F})_\phi}{a\cos\phi}}^{\text{EPFD_lat_[qg,pr]}}= \frac{1}{(a\cos{}\phi)^2} \frac{\partial{}(\overbrace{F_\phi}^{\text{EPF_lat_[qg,pr]}}\cos\phi)}{\partial{}\phi}$$

EP-flux is defined as follows (terms only included in the primitive-equation version are indicated with “pr”)

$$\{F_{\phi},\,F_p\} = a\cos\phi\left\{\overbrace{\frac{\overline{v’\theta’}}{\partial\overline{\theta}/\partial{}p}\frac{\partial\overline{u}}{\partial{p}}}^{\text{pr}}-\overline{u’v’} , \, -\overbrace{\frac{\overline{v’\theta’}}{\partial\overline{\theta}/\partial{}p}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}}^{\text{pr}}+\frac{\overline{v’\theta’}}{\partial{}\overline{\theta}/\partial{}p}f-\overbrace{\overline{\omega’u’} }^{\text{pr}}\right\} $$

For a reference with these equations, although in a slightly different form, refer to Martineau, P., Wright, J. S., Zhu, N. and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, 10(4), 1925–1941, doi:10.5194/essd-10-1925-2018, 2018.

Wavenumber decompositions are provided for EP-flux in the NetCDF files in the following order: full field, wavenumber 1, wavenumber 2

tem-thermo: thermodynamic equation from the transformed Eulerian mean

SymbolDescriptionNetCDF nameUnits
$-\overline{v}^*\frac{1}{a}\frac{\partial\overline{\theta}}{\partial{}\phi}$Advection of potential temperature by the meridional residual circulationtheta_adv_by_vres$K \,s^{-1}$
$ – \overline{\omega}^*\frac{\partial\overline{\theta}}{\partial{}p}$Advection of potential temperature by the vertical residual circulationtheta_adv_by_wres$K \,s^{-1}$
$-\frac{\partial}{\partial{}p}\left(\frac{\overline{v’\theta’}\frac{\partial\overline{\theta}}{\partial\phi}}{a\frac{\partial\overline{\theta}}{\partial{}p}}+\overline{\omega’\theta’}\right)$Potential temperature tendency due to eddy fluxesflux_term$K \,s^{-1}$
Thermodynamic equation diagnostics in the transformed Eulerian mean (tem_thermo) provided in the reanalysis intercomparison dataset.

In the transformed Eulerian mean, the thermodynamic equation takes the following form:

$$\frac{\partial\overline{\theta}}{\partial{}t} = \overbrace{-\overline{v}^*\frac{1}{a}\frac{\partial\overline{\theta}}{\partial{}\phi}}^{\text{theta_adv_by_vres}} \underbrace{- \overline{\omega}^*\frac{\partial\overline{\theta}}{\partial{}p}}_{\text{theta_adv_by_wres}}\overbrace{-\frac{\partial}{\partial{}p}\left(\frac{\overline{v’\theta’}\frac{\partial\overline{\theta}}{\partial\phi}}{a\frac{\partial\overline{\theta}}{\partial{}p}}+\overline{\omega’\theta’}\right)}^{\text{flux_term}}+Q$$

moist: diagnostics involving specific humidity

SymbolDescriptionNetCDF nameUnits
$\overline{q}$Specific humidityq$kg\, kg^{-1}$
$\overline{v’q’}$Meridional flux of specific humidity / meridional moisture fluxvq$m\,s^{-1}\,kg\,kg^{-1}$
$\overline{\omega’q’}$Vertical flux of specific humidity / vertical moisture fluxwq$Pa\,s^{-1}\,kg\,kg^{-1}$
Disgnostics involving specific humidity (moist) provided in the reanalysis intercomparison dataset.

Single-level

VariableDescriptionLevels (hPa)
$T$Temperature850
$q$Specific humidity850
$Z$Geopotential height500, 10
$u$Eastward wind / zonal wind850
Variables provided in the single-level component of the reanalysis intercomparison dataset. They are provided on a common 2.5 by 2.5 degree grid.

Surface

Under development