The RID provides various data divided into three components:
Component | Label |
Zonal-mean data on pressure levels | zonal |
Horizontal slices of selected pressure levels | single-level |
Surface variables *under development | surface |
Zonal
The zonal-mean component of the dataset is composed of the following subcomponents:
Label | Description |
core | Core set of zonal-mean variables |
fluxes | Eddy covariance terms based on zonal anomalies |
dt | Temporal derivatives |
mom | Diagnostics based on the momentum equation |
tem-qg | Transformed Eulerian mean diagnostics based on quasi-geostrophic equations |
tem-pr | Transformed Eulerian mean diagnostics based on primitive equations |
tem-thermo | Thermodynamic diagnostics based on Transformed Eulerian mean primitive equations |
moist | Diagnostics involving specific humidity |
Notation: Overbars ($\overline{x}$) denote zonal averages and primes ($’$) departures therefrom.
Zonal diagnostics are provided on the following pressure levels:
Common | 20CRv2 | 20CRv2c | 20CRv3 | CFSR | CFSv2 | ERA-20C | ERA-40 | ERA-Interim | ERA5 | ERA5.1 | JRA-25 | JRA-3Q | JRA-55 | JRA-55C | MERRA | MERRA-2 | NCEP-DOE-R2 | NCEP-NCAR-R1 | OCADA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pressure Levels (hPa) | ||||||||||||||||||||
1 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |||||
2 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | ||||||
3 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | ||||||
5 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |||||
7 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | ||||||
10 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |
20 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |
30 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |
50 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |
70 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | |
100 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
150 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
200 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
250 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
300 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
400 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
500 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
600 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
700 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
850 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
925 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | ||
1000 | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o | o |
core: zonal mean of core variables
Symbol | Description | NetCDF name | Units |
$\overline{u}$ | Zonal-mean zonal wind | u | $m\,s^{-1}$ |
$\overline{v}$ | Zonal-mean meridional wind | v | $m\,s^{-1}$ |
$\overline{\omega}$ | Zonal-mean pressure velocity | w | $Pa\,s^{-1}$ |
$\overline{T}$ | Temperature | t | $K$ |
$\overline{Z}$ | Geopotential height | z | $m$ |
fluxes: eddy covariance terms based on zonal anomalies
Symbol | Description | NetCDF name | Units |
$\overline{u’^2}$ | Zonal wind variance | uu | $m^2\,s^{-2}$ |
$\overline{v’^2}$ | Meridional wind variance | vv | $m^2\,s^{-2}$ |
EKE | Eddy kinetic energy | obtained by adding uu and vv | $m^2\,s^{-2}$ |
$\overline{Z’^2}$ | Variance of geopotential height | zz | $m^2$ |
$\overline{T’^2}$ | Temperature variance | tt | $K^2$ |
$\overline{u’v’}$ | Covariance of zonal and meridional wind anomalies, or meridional mementum flux | vu | $m^2\,s^{-2}$ |
$\overline{u’\omega’}$ | Covariance of zonal wind anomalies and pressure-velocity wind anomalies, or meridional momentum flux | wu | $m\,Pa\,s^{-2}$ |
$\overline{v’T’}$ | Covariance of meridional wind anomalies and temperature anomalies, or meridional heat flux | vt | $m\,K\,s^{-1}$ |
$\overline{\omega’T’}$ | Covariance of pressure velocity anomalies and temperature anomalies, or vertical heat flux | wt | $Pa\,K\,s^{-1}$ |
dt: temporal derivatives
Symbol | Description | NetCDF name | Units |
$\partial{}\overline{T}/\partial{}t$ | Time derivative of temperature | t_dt | $K\, s^{-1}$ |
$\partial{}\overline{u}/\partial{}t$ | Time derivative of zonal wind | u_dt | $m\,s^{-2}$ |
mom: diagnostics of the momentum equation
Symbol | Description | NetCDF name | Units |
$f\overline{v}$ | Acceleration by Coriolis torque | coriolis_torque | $m\,s^{-2}$ |
$ – \overline{v}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}$ | Acceleration by meridional advection of momentum | u_adv_by_v | $m\,s^{-2}$ |
$- \overline{\omega}\frac{\partial\overline{u}}{\partial{}p} $ | Acceleration by vertical advection of momentum | u_adv_by_w | $m\,s^{-2}$ |
$-\frac{\partial{}(\overline{\omega’u’})}{\partial{}p}$ | Acceleration by vertical momentum flux convergence | u_accel_by_wu_flux | $m\,s^{-2}$ |
$- \frac{1}{a\cos^2\phi}\frac{\partial(\overline{u’v’}\cos^2\phi)}{\partial\phi}$ | Acceleration by meridional momentum flux convergence | u_accel_by_vu_flux | $m\,s^{-2}$ |
In the zonal mean, the momentum equation is written:
$$\frac{\partial\overline{u}}{\partial{}t} = \overbrace{f\overline{v}}^{\text{coriolis_torque}} \underbrace{- \overline{v}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}}_{\text{u_adv_by_v}} \overbrace{-\overline{\omega}\frac{\partial\overline{u}}{\partial{}p}}^{\text{u_adv_by_w}} \underbrace{- \frac{1}{a\cos^2\phi}\frac{\partial(\overline{u’v’}\cos^2\phi)}{\partial\phi}}_{\text{u_accel_by_vu_flux}}\overbrace{-\frac{\partial{}(\overline{\omega’u’})}{\partial{}p}}^{\text{u_accel_by_wu_flux}} $$
tem-qg and tem-pr: diagnostics of Eliassen-Palm flux and transformed Eulerian mean
Symbol | Description | NetCDF name | Units |
$\phi$ | latitude | lat | |
$p$ | pressure | pre | |
$a$ | Earth radius, 6371000 m | $m$ | |
$\overline{v}^*$ | Meridional component of residual circulation | vres | $m\,s^{-1}$ |
$\overline{\omega}^*$ | Vertical component of residual circulation | wres | $Pa\,s^{-1}$ |
$f\overline{v}^*$ | Coriolis torque | coriolis_torque_tem | $m\,s^{-2}$ |
$- \overline{v}^*\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial{}\phi}$ | Momentum advection by meridional residual circulation | u_adv_by_vres$^{1}$ | $m\,s^{-2}$ |
$- \overline{\omega}^*\frac{\partial\overline{u}}{\partial{}p}$ | Momentum advection by vertical residual circulation | u_adv_by_wres$^{1}$ | $m\,s^{-2}$ |
$F_p$ | vertical component of EP-flux | EPF_pre_[qg,pr] | $Pa\,m^{2}\,s^{-2}$ |
$F_\phi$ | meridional component of EP-flux | EPF_lat_[qg,pr] | $m^{3}\,s^{-2}$ |
$\frac{(\nabla\cdot\mathbf{F})_p}{a\cos\phi}$ | EP-flux divergence impact on zonal wind acceleration, vertical component | EPFD_pre_[qg,pr]$^{2}$ | $m\,s^{-2}$ |
$\frac{(\nabla\cdot\mathbf{F})_\phi}{a\cos\phi}$ | EP-flux divergence impact on zonal wind acceleration, meridional component | EPFD_lat_[qg,pr]$^{2}$ | $m\,s^{-2}$ |
$\frac{\nabla\cdot\mathbf{F}}{a\cos\phi}$ | EP-flux divergence impact on zonal wind acceleration | obtained by adding EPFD_pre_[qg,pr] and EPFD_lat_[qg,pr] | $m\,s^{-2}$ |
1 These variables belong to tem-pr but were saved in tem-qg by mistake.
2 These variables contain errors in NetCDF documentation. Please ignore.
In the transformed Eulerian mean, the momentum equation is written
$$\frac{\partial{}\overline{u}}{\partial{t}} = \overbrace{f\overline{v}^*}^{\text{coriolis_torque_tem}} \underbrace{- \overline{v}^*\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial{}\phi}}_{\text{u_adv_by_vres}} \overbrace{- \overline{\omega}^*\frac{\partial\overline{u}}{\partial{}p}}^{\text{u_adv_by_wres}} + \frac{\nabla\cdot\mathbf{F}}{a\cos\phi}$$
where the residual circulation is defined as
$$\overbrace{\overline{v}^*}^{\text{vres}}=\overline{v}-\frac{\partial}{\partial{}p}\left[\frac{\overline{v’\theta’}}{\partial{}\overline{\theta}/\partial{}p}\right]$$
$$\overbrace{\overline{\omega}^*}^{\text{wres}}= \overline{\omega}+\frac{1}{a\cos\phi}\frac{\partial}{\partial\phi}\left[\frac{\overline{v’\theta’}\cos\phi}{\partial\overline{\theta}/\partial{}p}\right]$$
The equation of the EP-flux divergence is:
$$\nabla\cdot\mathbf{F}=\underbrace{ \frac{1}{a\cos{}\phi} \frac{\partial{}(\overbrace{F_\phi}^{\text{EPF_lat_[qg,pr]}}\cos\phi)}{\partial{}\phi}}_{(\nabla\cdot\mathbf{F})_\phi}+\underbrace{\frac{\partial{}\overbrace{F_p}^{\text{EPF_pre_[qg,pr]}}}{\partial{}p}}_{(\nabla\cdot\mathbf{F})_p}$$
In the dataset, the EP-flux divergence is provided in the form of its impact on zonal wind acceleration. It is therefore scaled by $\frac{1}{a\cos\phi}$:
$$\overbrace{\frac{(\nabla\cdot\mathbf{F})_p}{a\cos\phi}}^{\text{EPFD_pre_[qg,pr]}}= \frac{1}{a\cos\phi}\frac{\partial{}\overbrace{F_p}^{\text{EPF_pre_[qg,pr]}}}{\partial{}p}$$
$$\overbrace{\frac{(\nabla\cdot\mathbf{F})_\phi}{a\cos\phi}}^{\text{EPFD_lat_[qg,pr]}}= \frac{1}{(a\cos{}\phi)^2} \frac{\partial{}(\overbrace{F_\phi}^{\text{EPF_lat_[qg,pr]}}\cos\phi)}{\partial{}\phi}$$
EP-flux is defined as follows (terms only included in the primitive-equation version are indicated with “pr”)
$$\{F_{\phi},\,F_p\} = a\cos\phi\left\{\overbrace{\frac{\overline{v’\theta’}}{\partial\overline{\theta}/\partial{}p}\frac{\partial\overline{u}}{\partial{p}}}^{\text{pr}}-\overline{u’v’} , \, -\overbrace{\frac{\overline{v’\theta’}}{\partial\overline{\theta}/\partial{}p}\frac{1}{a\cos\phi}\frac{\partial{}(\overline{u}\cos\phi)}{\partial\phi}}^{\text{pr}}+\frac{\overline{v’\theta’}}{\partial{}\overline{\theta}/\partial{}p}f-\overbrace{\overline{\omega’u’} }^{\text{pr}}\right\} $$
For a reference with these equations, although in a slightly different form, refer to Martineau, P., Wright, J. S., Zhu, N. and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, 10(4), 1925–1941, doi:10.5194/essd-10-1925-2018, 2018.
Wavenumber decompositions are provided for EP-flux in the NetCDF files in the following order: full field, wavenumber 1, wavenumber 2
tem-thermo: thermodynamic equation from the transformed Eulerian mean
Symbol | Description | NetCDF name | Units |
$-\overline{v}^*\frac{1}{a}\frac{\partial\overline{\theta}}{\partial{}\phi}$ | Advection of potential temperature by the meridional residual circulation | theta_adv_by_vres | $K \,s^{-1}$ |
$ – \overline{\omega}^*\frac{\partial\overline{\theta}}{\partial{}p}$ | Advection of potential temperature by the vertical residual circulation | theta_adv_by_wres | $K \,s^{-1}$ |
$-\frac{\partial}{\partial{}p}\left(\frac{\overline{v’\theta’}\frac{\partial\overline{\theta}}{\partial\phi}}{a\frac{\partial\overline{\theta}}{\partial{}p}}+\overline{\omega’\theta’}\right)$ | Potential temperature tendency due to eddy fluxes | flux_term | $K \,s^{-1}$ |
In the transformed Eulerian mean, the thermodynamic equation takes the following form:
$$\frac{\partial\overline{\theta}}{\partial{}t} = \overbrace{-\overline{v}^*\frac{1}{a}\frac{\partial\overline{\theta}}{\partial{}\phi}}^{\text{theta_adv_by_vres}} \underbrace{- \overline{\omega}^*\frac{\partial\overline{\theta}}{\partial{}p}}_{\text{theta_adv_by_wres}}\overbrace{-\frac{\partial}{\partial{}p}\left(\frac{\overline{v’\theta’}\frac{\partial\overline{\theta}}{\partial\phi}}{a\frac{\partial\overline{\theta}}{\partial{}p}}+\overline{\omega’\theta’}\right)}^{\text{flux_term}}+Q$$
moist: diagnostics involving specific humidity
Symbol | Description | NetCDF name | Units |
$\overline{q}$ | Specific humidity | q | $kg\, kg^{-1}$ |
$\overline{v’q’}$ | Meridional flux of specific humidity / meridional moisture flux | vq | $m\,s^{-1}\,kg\,kg^{-1}$ |
$\overline{\omega’q’}$ | Vertical flux of specific humidity / vertical moisture flux | wq | $Pa\,s^{-1}\,kg\,kg^{-1}$ |
Single-level
Variable | Description | Levels (hPa) |
$T$ | Temperature | 850 |
$q$ | Specific humidity | 850 |
$Z$ | Geopotential height | 500, 10 |
$u$ | Eastward wind / zonal wind | 850 |
Surface
Under development